
01/04/2021

Deep Q-Networks
and

Its Variants
Bilal Piot and Corentin Tallec

Programme of the talk

Programme of the talk

● Part 1: DQN Deep Q-Networks

○ Context and History:
■ Context

■ The milestones: from Value Iteration to DQN

■ Environment and Results

○ Theory:
■ Reminder of the Value Iteration algorithm

■ Approximate Value Iteration

■ Neural Fitted-Q algorithm

■ From Neural Fitted-Q to DQN

○ Practice:
■ Overview of a DQN Implementation

Programme of the talk

● Part 2: DQN and Its Variants

○ DQN and its variants: an overview of the literature:
■ Algorithmic Improvements:

● DDQN
● Prioritized Replay
● Distributional RL

■ Architectural Improvements:
● Dueling DQN
● Distributed Agents

■ Memory:
● Working Memories
● Episodic Memories

■ Exploration:
● Never Give Up Agent

■ Meta Controllers:
● Bandit
● Meta-gradient RL

■ Agent57: Combining all the known improvements.

Part 1: DQN
Deep Q-Networks

Context and History

Context

● Control Theory:
○ Aims at guiding “safely” and “rapidly” a dynamical system to a desired state.
○ Has been one of the major advances in engineering in the 20th century:

■ Aviation
■ Manufacturing
■ Electronics
■ Energy

○ Works extremely well when those conditions are met:
■ Knowledge of the state variables (features)
■ Knowledge of their dynamics

● Reinforcement Learning (RL):
○ A general paradigm for control theory when the model of the world is unknown.
○ Has the potential to tackle complex control theory problems:

■ High dimensional state-action spaces
■ Partial observability

○ Deep Q-Network was one of the papers that reignited the interest in RL as a general solution to
control theory.

Milestones: From Value Iteration to DQN

● Value Iteration in stochastic games (Shapley 1953) and Markov decision processes (Bellman 1957):
○ Computes the optimal value of an MDP.
○ The proof relies on fixed-point theory: Banach contraction theorem (1922).

● Approximate Value Iteration:
○ Bounds in infinity norm: Bertsekas and Tsitsiklis (1996)
○ Bounds in Lp norm: Munos (2007)

● Fitted-Q Algorithms:
○ Fitted-Q with random forests: Ernst (2005)
○ Neural fitted-Q: Riedmiller (2005)

● Atari as an environment:
○ ALE: Bellemare (2012)

● Deep Q-Network:
○ Scaling Neural fitted-Q to Atari games: Mnih (2013)

https://hal.inria.fr/inria-00124685/document
https://jmlr.org/papers/volume6/ernst05a/ernst05a.pdf
http://ml.informatik.uni-freiburg.de/former/_media/publications/rieecml05.pdf
https://arxiv.org/pdf/1207.4708.pdf
https://arxiv.org/pdf/1312.5602.pdf

The Environment: ALE

The Arcade Learning Environment (ALE) is the environment chosen for DQN:

● Around 50 Atari games

● Raw observations:
○ RAM: 128 bytes (0-255)
○ 2D-RGB image: 160x210x3, 100 800 bytes

● Raw actions: 18 discrete actions (0-17)

● Rewards: deltas of the score of the game

● Frequency: 60 Hz

● Length of a game: 30 minutes or more

● Why is it interesting:
○ Huge state space
○ No canonical meaningful features
○ Very long optimization horizon

https://sites.google.com/corp/view/agent57

Preprocessing:

The algorithm DQN is almost end to end:

● Preprocessing of an observation is done in this order (Reduce the computation):
○ No RAM state in the observation, keep only the image: [160, 210, 3]
○ Take the maximum for each pixel of image at time t and t-1: [160, 210, 3]
○ Extract the luminance from the RGB: [160, 210, 1]
○ Downscale the image to 84x84: [84, 84, 1]

● Stacking of the 4 previous preprocessed observation (Reduce the partial observability): [84, 84, 4]
● The stack of the preprocessed observation is the input of the DQN algorithm.
● The output of DQN is the action at 15 Hz frequency which means that there is an action repeat of 4.

DQN

Preprocessing:
Image: [84, 84, 1]

Environment:
Image: [160, 210, 3]
RAM: 128 bytes

Stacking:
Input: [84, 84, 4] Output: (0-17)

The results:

Theory

Reminder of the Value Iteration (VI) Algorithm:
Theoretical setting.
We consider the control problem in a finite Markov Decision Process

● States:
● Actions:
● Reward function:
● Transition kernel:
● Discount factor:

We are looking for a stationary policy

that maximises the expected discounted sum of future rewards represented by the state-action value function:

where is the distribution over trajectories following policy and starting

from .

Reminder of the Value Iteration (VI) Algorithm:
Formulation
Let us define the optimal Bellman operator :

This operator is a contraction, therefore such that

In addition, corresponds to the maximum of the state-action value function:

To compute one can follow the contracting discrete scheme called Value Iteration:

Initialisation:

VI recurrence:

Real-world setting: Interactive Environments

From Value Iteration to Approximate Value
Iteration

PROBLEM: Applying the VI recurrence is impossible in a real-world setting:
● State-action spaces can be too large!
● Dynamics are not fully known!
● States and actions can’t be trivially collected, they need to be reached by a non trivial policy (locality

problem).

However, the optimal Bellman operator can be evaluated on a known dataset of already visited transitions:

The evaluations (also called targets) are unbiased estimates of

Therefore, we can build the following regression dataset:

Regression
Algorithm

Reminder on Regression

In regression, we have:
● a set of points

● and noisy but unbiased estimates also called targets of a function

The goal is to retrieve this function with minimal error. More precisely:

● with

From the dataset a regression algorithm output a function .

The regression error is defined as . One instantiation of a regression algorithm is:

with regression loss and functional space

Approximate Value Iteration step seen as a
regression

Regression Notations Approximate VI step Notations

Approximate Value Iteration (AVI): Formulation

The AVI recurrence step consists in two steps:

1. Build a regression dataset:
a. Collect a dataset of transitions:

b. Compute unbiased estimates of the optimal Bellman operator:

c. Create the regression dataset:

2. Apply a regression algorithm of your choice:

Regression
Algorithm

Initialisation:

AVI recurrence:

Approximate Value Iteration (AVI): Bounds

Let be the supremum in infinite norm of the regression errors and let us define

the greedy policy:

then, we have the following bound:

This is a bound in infinite norm, for tighter bounds with other norms see:
● Munos 2007: https://hal.inria.fr/inria-00124685/document
● Scherrer 2014: https://hal.inria.fr/hal-01091341/document

https://hal.inria.fr/inria-00124685/document
https://hal.inria.fr/hal-01091341/document

Neural Fitted-Q: Intro and Notations

Neural Fitted-Q (Riedmiller 2005) is an instantiation of AVI where the regression algorithm have the
following properties:

● The functional regression space is parameterized by a neural network.
● The loss function is a squared-like loss.
● The optimizer is SGD-based (Rprop for the original but could be Adam).
● The data used for regression was often a fixed batch of data.

Initialisation:

Neural Fitted-Q
recurrence:

Neural Fitted-Q: original pseudo-code.

Initialisation:

Neural
Fitted-Q

Recurrence: Regression
algorithm

Building the
regression dataset

Neural Fitted-Q: an overview.

The Neural Fitted-Q recurrence follows the same pattern as the AVI one:

1. Build the regression dataset:
a. Collect a dataset of transitions:

b. Compute unbiased estimates of the optimal Bellman operator:

c. Create the regression dataset:

2. Apply regression with squared loss and optimize it with an SGD-based optimizer:

Neural Fitted-Q: in details.

Here we show how we compute in details the regression

The expected squared loss will be approximated by where is a batch of data.

Then, the optimization will consists of a fixed number of SGD-like steps performed by an optimizer:

1. Initialisation:

2. For :
a. Draw uniformly a batch of transitions from the dataset:

b. Compute the targets:

c. Form the regression batch:

d. Compute the loss:

e. Take a SGD-like step:

3. Update the parameters:

From Neural Fitted-Q to DQN

From Neural Fitted-Q to DQN, only some small changes but a 8 year gap:

● Data collection: going from a batch dataset to a replay buffer filled by the online policy. Acting and
Learning are done simultaneously.

● Architecture: Bigger neural network architecture.

● Optimization: Using RMSprop.

Some vocabulary introduced by DQN but the underlying concepts were already existing:

● Online network: The neural network that optimizes the loss.

● Target network: The neural network of the previous AVI iteration with fixed weights.

● Online policy: The policy that collects the data.

● Replay buffer: The collections of transitions from which the batches are samples.

● Update period: How many steps of gradients are taken before going to the next AVI iteration.

DQN: an overview

Neural Fitted-Q

Replay Buffer(FIFO)

Environment
Action

TransitionBatch

DQN: the data collection (Acting).

In DQN, the data is collected via the epsilon-greedy online policy:

Greedy-policy:

Uniform policy:

Epsilon-greedy policy:

Start an episode at and collect an episode following the policy :

Replay Buffer (FIFO)

DQN: the regression step (Learning).

Here we show how we compute in details the regression

Then, the optimization will consists of a fixed number of SGD-like steps performed by an optimizer:

1. Initialisation:

2. For :
a. Draw uniformly a batch of transitions from the replay:

b. Compute the targets:

c. Form the regression batch:

d. Compute the loss:

e. Take a SGD-like step:

3. Update the parameters:

DQN: Architecture.

Conv
Kernel:8x8
Stride:4x4

Channels:32
+

RELU

Conv
Kernel:4x4
Stride:2x2

Channels:64
+

RELU

Conv
Kernel:3x3
Stride:1x1

Channels:64
+

RELU

Fu
lly

 C
on

ne
ct

ed

(U
ni

ts
: 5

12
)

+
R

EL
U

Fu
lly

 C
on

ne
ct

ed

(U
ni

ts
:1

8)

Practice

DQN Zoo Codebase

Material:
● The DQN Zoo codebase

Information:
● The codebase is open source and developed by DeepMind (John Quan and Georg Ostrovski)

● The code is in Python, JAX, Haiku and Rlax.

● It tries to reproduce results of DQN and some of its variants on Atari:
○ DQN
○ DDQN
○ Prioritized Experience Replay

● Can be installed on a machine with a single GPU

● Comes with a run function and plotting tools

● Each agent comes with:
○ A class describing the agent
○ A run function
○ A test function

https://github.com/deepmind/dqn_zoo
https://github.com/google/jax
https://github.com/deepmind/dm-haiku
https://github.com/deepmind/rlax

Inspecting the DQN code

Questions:

● In which file the learning/interaction loop is implemented?

● In which file the DQN agent functions are defined?

● In which library can I find the DQN loss?

● How the networks parameters are updated?

● How is the replay implemented?

● Where is the preprocessing done?

Exercice

From the DQN code write its pseudo code.

Part 2: DQN
and its Variants

DQN and its variants:
an overview of the literature

Improvements to DQN

Since 2015, several improvements have been made:

● Algorithmic improvements:
○ Double DQN
○ Prioritized replay
○ Distributional RL

● Architectural improvements:
○ Dueling architecture
○ Distributed setting

● Memory additions:
○ Working memories: LSTM, GRU
○ Episodic memory

● Exploration mechanisms:
○ An entire literature on this topic has been developed since the 90’s

● Meta-controller:
○ Bandits
○ Meta-gradients
○ Population-based training

https://deepmind.com/blog/article/Agent57-Outperforming-the-human-Atari-benchmark

Double DQN (DDQN)

Material:
● Double Q Learning paper
● Double DQN paper

The Problem: Q Learning has been shown to overestimate its targets, because it uses a single estimator for estimating
the Q values and choosing the maximum over actions.

The Solution: To overcome this, Double Q Learning uses a double estimator technique.

The double estimator technique disentangle the estimation of the Q values from the choice of the maximum over the
actions:

● The target network is used for estimation.
● The online network for choosing the greedy action.

 becomes where

https://papers.nips.cc/paper/2010/file/091d584fced301b442654dd8c23b3fc9-Paper.pdf
https://arxiv.org/pdf/1509.06461.pdf

Prioritized Experience Replay

Material:
● Prioritized Experience Replay paper

The Idea: Prioritize transitions with high TD errors and weight those transitions adequately to
eliminate the introduced bias.

TD error:

Priority:

Probability of being selected:

Loss reweighting:

https://arxiv.org/pdf/1511.05952.pdf

Dueling Architecture

Material:
● Dueling network architecture

The Idea: Decompose the Q value into a state-dependent part and a state-action dependent part.

The effect: This allows to share the state-dependent estimations (good for actions that are less chosen), focuses in
estimating the state-action dependent part (good for relative ranking of the actions).

https://arxiv.org/pdf/1511.06581.pdf

Distributional RL

Material:
● Categorical Distributional RL paper
● Implicit Quantile Network paper
● Dopamine Blog

The Idea:
● Learn the distribution of the discounted return.
● Still act according the expected discounted return.

Why it works:
● Learning the full distribution is a natural auxiliary task for better representation learning.

Distribution of returns of a given policy:

Distributional Bellman Operator:

https://arxiv.org/pdf/1707.06887.pdf
https://arxiv.org/pdf/1806.06923.pdf
https://deepmind.com/blog/article/Dopamine-and-temporal-difference-learning-A-fruitful-relationship-between-neuroscience-and-AI

Distributional RL in a nutshell!

To learn a distribution of a real random variable you need to learn the cumulative distribution function:

Categorical approach: Learning the probabilities by counting!

Quantile approach: Learning the quantiles with quantile regression!

Results for DQN-based non-distributed agents

Results for DQN-based non-distributed agents

Distributed Setting

The Idea: Decoupling the learning from the data collection.

Working Memory

Material:
● R2D2 paper

The Idea:
● Use a recurrent neural network to tackle the partial observability problem.

Q-head

Conv
Torso

Q-head

Conv
Torso

LSTM

Q-head

Conv
Torso

LSTM

Q-head

Conv
Torso

LSTM

https://openreview.net/pdf?id=r1lyTjAqYX

R2D2 results

Exploration

Reinforcement Learning is not only about maximizing the known rewards (exploitation) but also about
finding new rewards (exploration).

Exploration mechanism in DQN: epsilon-greedy

There is an entire literature on improving this basic exploration mechanism:
● Uncertainties estimation: Use the uncertainty about the world as an incentive for exploration.

○ State uncertainty: Random Network Distillation

○ Future uncertainty: Prediction error

○ Model uncertainty: Model disagreement

○ Value uncertainty: Uncertainty Bellman Equation

● Entropy maximisation:

○ Episodic entropy maximisation: Never Give Up

○ Global entropy maximisation: Geometric Entropy Maximisation

https://arxiv.org/pdf/1810.12894.pdf
https://pathak22.github.io/noreward-rl/resources/icml17.pdf
https://arxiv.org/pdf/1906.04161.pdf
https://arxiv.org/pdf/1709.05380.pdf%5D
https://arxiv.org/pdf/2002.06038.pdf
https://arxiv.org/pdf/2101.02055.pdf

Never Give Up Episodic bonus

Build controllable states: self-supervised inverse dynamics model

Compute an estimate how familiar is a given state.

Never Give Up: complete exploration bonus

Meta-Controller

Arms: Rewards:
Episode Score

Agent57: Combining most improvements

Agent57 combines:
● Prioritized replay

● Dueling architecture

● Separated Q values, one for exploration and the other for exploitation

● Distributed actors

● Episodic Memory

● Working Memory conditioned on hyperparameters optimized by the Meta-Controller

● Exploration: Never Give Up

● Meta-Controller: Bandit

http://proceedings.mlr.press/v119/badia20a/badia20a.pdf

Agent57: results

