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… it needs millions of time-steps to find good solutions (data-efficiency)

(Deep) Reinforcement Learning is nice but…
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DQN for Atari games : 

38 days (original paper)

Mnih, V., et al (2015). Human-level control through deep reinforcement learning. nature, 518(7540), 529-533.


Heess N, et al. Emergence of locomotion behaviours in rich environments. arXiv preprint arXiv:1707.02286. 2017 Jul 7. (Google DeepMind)


Geijtenbeek, T., van de Panne, M., & van der Stappen, A. F. (2013). "Flexible muscle-based locomotion for bipedal creatures”. ACM 

Transactions on Graphics (TOG), 32(6), 206.


DPPO / PPO 

~10 million training steps


~ 500k seconds at 20Hz (140 hours, or 6 

days)

Algorithm: CMA-ES /  ~ 20000 episodes
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Levine, S., Pastor, P., Krizhevsky, A., Ibarz, J., & Quillen, D. (2018). Learning hand-eye coordination for robotic grasping with deep learning 

and large-scale data collection. The International Journal of Robotics Research, 37(4-5), 421-436.

Can we do the same on a robot?

… if we have a lot of time & money



• Some systems are very expensive to simulate (e.g., fluid dynamics)


• There is (always) a reality gap: policies learned in simulation do not work well on the real system


• Why do you want to learn? 

• you have a model (simulator) but you cannot write a controller:


• are you sure? (Model-Predictive Control, planning, …)


… MPC/Planning is too expensive to run onboard: use learning (e.g., Guided Policy Search)


… non-trivial sensors (e.g., vision): maybe use deep-RL (?)


… model too complex for MPC/planning: maybe use deepRL (?)

but:

… this is why we use simulators!
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No learning 
… but model-based control!
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Unknown damage 
… no model!



• Some systems are very expensive to simulate (e.g., fluid dynamics)


• There is (always) a reality gap: policies learned in simulation do not work well on the real system


• Why do you want to learn a policy? 

• you have a model (simulator) but you cannot write a controller:


• are you sure? (Model-Predictive Control, planning, …)


… MPC/Planning is too expensive to run onboard: use learning (e.g., Guided Policy Search)


… non-trivial sensors (e.g., vision): maybe use deep-RL (?)


… model too complex for MPC/planning: maybe use deepRL (?)


• model/reward is (partially) unknown (e.g., damaged robot): we cannot simulate it accurately!


• (reinforcement) learning most useful for adaptation in robotics (vs design)


• Using a simulator = having a model (possibly complex) of the system!

but:

… this is why we use simulators!
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learning is most useful when the model is unknown 

… which means no (accurate) simulator
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Mouret, JB. (2016) "Micro-Data Learning: The Other End of the Spectrum." ERCIM News 

K. Chatzilygeroudis, V. Vassiliades, F. Stulp, S. Calinon, J.-B. Mouret. (2018). A survey on policy search algorithms for learning robot controllers in a handful of trials. IEEE TRO 2020

« Big-Data » 

Deep learning ?

Amount of data
« Micro-data » 

1-20 trials
A few minutes

Atari games : 

38 days

4.9 million games

(self-play) / 40 days

?
• We want to minimize the interaction time with the system


• We consider that pure computation time is “free”
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K. Chatzilygeroudis, V. Vassiliades, F. Stulp, S. Calinon, J.-B. Mouret. (2020). A survey on policy search algorithms for learning robot 

controllers in a handful of trials. IEEE Transactions on Robotics,

unknown parameters ( ) 

… but known structure


(neural network, 


motion primitive, …)

θ
unknown dynamics 

… but can be queried!


(simulator, robot)
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models

dynamics policy expected return

model-based policy search Bayesian optimization
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K. Chatzilygeroudis, V. Vassiliades, F. Stulp, S. Calinon, J.-B. Mouret. (2020). A survey on policy search algorithms for learning robot 

controllers in a handful of trials. IEEE Transactions on Robotics,

learn to predict dynamics from  

… then use the predictor like


a simulator to search for 


(x, u)

π(u |x, θ)

learn to predict rewards from  

… then search for the best


parameters directly 


θ
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K. Chatzilygeroudis, V. Vassiliades, F. Stulp, S. Calinon, J.-B. Mouret. (2020). A survey on policy search algorithms for learning robot 

controllers in a handful of trials. IEEE Transactions on Robotics,

part 3 part 1 part 2



1 Hand-designed policies 

use well-designed policies with few parameters  

use demonstrations 

2 Bayesian optimization (a model of the reward) 

learn to predict the reward value from  

3 Model-based policy search 

learn to predict the reward value from  

4 Keynote: Dongheui Lee (TU Munich) 

Efficient Motor Skills Learning in Robotics

θ

θ

Outline
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JB Mouret & Konstantinos Chatzilygeroudis

Micro-data policy search
Conclusion
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K. Chatzilygeroudis, V. Vassiliades, F. Stulp, S. Calinon, J.-B. Mouret. (2020). A survey on policy search algorithms for learning robot 

controllers in a handful of trials. IEEE Transactions on Robotics,

… what to use?
• Low-DOF robots (<10), high-D policy (NN) 

➔ small state-action space


➔model-based policy search


• High-DOF robot, low-D policy (hand-designed) 

➔Bayesian optimization


• Complex robots, complex policies 

➔Model-based policy search + prior from model (simulation, meta-learning)


➔BO + MAP-Elites


• High-D raw inputs (e.g., images) 

➔Sim2real? Use a VAE for unsupervised low-dimensional input?


• Computation time: 
➔ very high with model-based approach

➔ low with Bayesian optimisation (+ MAP-Elites)
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K. Chatzilygeroudis, V. Vassiliades, F. Stulp, S. Calinon, J.-B. Mouret. (2020). A survey on policy search algorithms for learning robot 

controllers in a handful of trials. IEEE Transactions on Robotics,

… everything is about priors

• There are always priors: 

• neural network topology


• using a neural networks vs something else


• hyper-parameters


• simulator of a real robot


• design of a reward function, …


• The best priors are generic priors 

• e.g. convolutional neural networks are a great prior!


• priors from simulation


• meta-learning


• The best priors can be overcome 

• We should think more about our prior and work on improving them 

(instead of hiding them)



K. Chatzilygeroudis, V. Vassiliades, F. Stulp, S. 

Calinon, J.-B. Mouret. (2020). A survey on policy 

search algorithms for learning robot controllers in 

a handful of trials. IEEE Transactions on Robotics,

Further readings
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A Survey on Policy Search Algorithms for Learning

Robot Controllers in a Handful of Trials
Konstantinos Chatzilygeroudis , Vassilis Vassiliades , Freek Stulp , Sylvain Calinon ,

and Jean-Baptiste Mouret

Abstract—Most policy search (PS) algorithms require thousands
of training episodes to find an effective policy, which is often
infeasible with a physical robot. This survey article focuses on the
extreme other end of the spectrum: how can a robot adapt with
only a handful of trials (a dozen) and a few minutes? By analogy
with the word “big-data,” we refer to this challenge as “micro-data
reinforcement learning.” In this article, we show that a first strategy
is to leverage prior knowledge on the policy structure (e.g., dynamic
movement primitives), on the policy parameters (e.g., demonstra-
tions), or on the dynamics (e.g., simulators). A second strategy is to
create data-driven surrogate models of the expected reward (e.g.,
Bayesian optimization) or the dynamical model (e.g., model-based
PS), so that the policy optimizer queries the model instead of the real
system. Overall, all successful micro-data algorithms combine these
two strategies by varying the kind of model and prior knowledge.
The current scientific challenges essentially revolve around scaling
up to complex robots, designing generic priors, and optimizing the
computing time.

Index Terms—Autonomous agents, learning and adaptive
systems, micro-data policy search (MDPS), robot learning.
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I. INTRODUCTION

R
EINFORCEMENT learning (RL) [1] is a generic frame-

work that allows robots to learn and adapt by trial and

error. There is currently a renewed interest in RL owing to recent

advances in deep learning [2]. For example, RL-based agents can

now learn to play many of the Atari 2600 games directly from

pixels [3], [4], that is, without explicit feature engineering, and

beat the world’s best players at Go and chess with minimal hu-

man knowledge [5]. Unfortunately, these impressive successes

are difficult to transfer to robotics because the algorithms behind

them are highly data-intensive: 4.8 million games were required

to learn to play Go from scratch [5], 38 days of play (real time)

for Atari 2600 games [3], and, for example, about 100 h of

simulation time (much more for real time) for a nine-degrees of

freedom (9-DOF) mannequin that learns to walk [6].

By contrast, robots have to face the real world, which cannot

be accelerated by GPUs nor parallelized on large clusters. The

real world will not become faster in a few years, contrary to

computers so far (Moore’s law). In concrete terms, this means

that most of the experiments that are successful in simulation

cannot be replicated in the real world because they would

take too much time to be technically feasible. As an example,

Levine et al. [7] recently proposed a large-scale algorithm for

learning hand-eye coordination for robotic grasping using deep

learning. The algorithm required approximately 800 000 grasps,

which were collected within a period of two months using 6–14

robotic manipulators running in parallel. Although the results are

promising, they were only possible because they could afford

having that many manipulators and because manipulators are

easy to automate: it is hard to imagine doing the same with a

farm of humanoids.

What is more, online adaptation is much more useful when it

is fast than when it requires hours—or worse, days—of trial and

error. For instance, if a robot is stranded in a nuclear plant and has

to discover a new way to use its arm to open a door; or if a walking

robot encounters a new kind of terrain for which it is required

to alter its gait; or if a humanoid robot falls, damages its knee,

and needs to learn how to limp: in most cases, adaptation has to

occur in a few minutes or within a dozen trials to be of any use.

By analogy with the word “big-data,” we refer to the challenge

of learning by trial and error in a handful of trials as “micro-data

RL” [8]. This concept is close to “data-efficient RL” [9], but

we think it captures a slightly different meaning. The main

difference is that efficiency is a ratio between a cost and benefit,


