From Policy Gradient to Actor-Critic methods Introduction: the 4 routes to deep RL

Olivier Sigaud

Sorbonne Université http://people.isir.upmc.fr/sigaud

The Big Picture

A very partial view of the whole RL literature

・ロト ・回ト ・ヨト ・ヨト

The four routes to deep RL

Four different ways to come to Deep RL

イロト イヨト イヨト イヨト

The Tabular RL route

- The favorite route of beginners
- Start from Sutton&Barto, present Q-learning, SARSA and Actor-Critic
- Add function approximation with NNs, go to DQN, then DDPG イロト イヨト イヨト イヨト

The Approximate Dynamic Programming route

- The favorite route of mathematicians
- I never travelled this route

Warren B. Powell. Approximate Dynamic Programming: Solving the curses of dimensionality, volume 703. John Wiley & Sons

DES SYSTÈMES INTELLIDENTS ET DE ROBOTIQU

5/9

The Evolutionary route

- The favorite route of black-box optimisation people
- Much more efficient than RL people think

arXiv preprint arXiv:1703.03864, 2017

DES SYSTÈMES INTELLIDENTS ET DE ROBOTIQU

The Policy Search route

- The favorite route of roboticists
- The one I'm travelling in these lessons
- Central question: difference between PG with baseline and Actor-Critic

Э

Outline

- 1. The policy search problem
- 2. Policy Gradient derivation (3 parts)
- 3. From policy gradient with baseline to actor-critic
- 4. Bias-variance trade-off
- 5. On-policy vs off-policy
- 6. TRPO, ACKTR
- **7**. PPO
- 8. DDPG, TD3
- 9. SAC
- 10. RWR
- 11. Wrap-up

From Policy Gradient to Actor-Critic methods

Any question?

Send mail to: Olivier.Sigaud@upmc.fr

Marc Peter Deisenroth, Gerhard Neumann, Jan Peters, et al.

A survey on policy search for robotics. Foundations and Trends \mathbb{R} in Robotics, 2(1-2):1-142, 2013.

Warren B. Powell.

Approximate Dynamic Programming: Solving the curses of dimensionality, volume 703. John Wiley & Sons, 2007.

Tim Salimans, Jonathan Ho, Xi Chen, and Ilya Sutskever.

Evolution strategies as a scalable alternative to reinforcement learning. arXiv preprint arXiv:1703.03864, 2017.

Richard S. Sutton and Andrew G. Barto.

Reinforcement Learning: An Introduction. MIT Press, 1998.

