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http://people.isir.upmc.fr/sigaud

1 / 8



From Policy Gradient to Actor-Critic methods

Policy Gradient Improvements

Limits of Algorithm 1

I Needs a large batch of trajectories or suffers from large variance

I The sum of rewards is not much informative
I Computing R from complete trajectories is not the best we can do
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* past rewards do not depend on the current action
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https://www.youtube.com/watch?v=S_gwYj1Q-44 (28’)
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Policy Gradient Improvements

Algorithm 2

I Same as Algorithm 1

I But the sum is incomplete, and computed backwards

I Slightly less variance, because it ignores irrelevant rewards
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Policy Gradient Improvements

Discounting rewards
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* reduce the variance by discounting the rewards along the trajectory
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https://www.youtube.com/watch?v=S_gwYj1Q-44 (39’)
4 / 8

https://www.youtube.com/watch?v=S_gwYj1Q-44


From Policy Gradient to Actor-Critic methods

Policy Gradient Improvements

Introducing the action-value function
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I It is just rewriting, not a new algorithm

I But suggests that the gradient could be just a function of the local step if
we could estimate Qπθ

(i)(st,at) in one step
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From Monte Carlo to bootstrap

Estimating Qπθ (s, a)

I Instead of estimating Qπθ (s, a) = IE(i)[Q
πθ
(i)

(s, a)] from Monte Carlo,

I Build a model Q̂
πθ
φ of Qπθ through function approximation

I Two approaches:
I Monte Carlo estimate: Regression against empirical return
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I Temporal Difference estimate: init Q̂
πθ
φ0

and fit using (s,a, r, s′) data
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I May need some regularization to prevent large steps in φ

https://www.youtube.com/watch?v=S_gwYj1Q-44 (36’)
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From Monte Carlo to bootstrap

Monte Carlo versus Bootstrap approaches

I Three options:
I MC direct gradient: Compute the true Qπθ over each trajectory
I MC model: Compute a model Q̂

πθ
φ over rollouts using MC regression, throw

it away after each policy gradient step
I Bootstrap: Update a model Q̂

πθ
φ over samples using TD methods,

keep it over policy gradient steps

I With bootstrap, update everything from the current state, see next lessons
I Next lesson: adding a baseline
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From Monte Carlo to bootstrap

Any question?

Send mail to: Olivier.Sigaud@upmc.fr
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