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• We fit a model from some family


 


to experiences 


 


• Then use the learned model for 
planning and acting


We ask:


• How to “fit a model”?


• Regret guarantee?

P(s′ |s, a), P ∈ 𝒫

(st, at, st+1, rt+1)

Model-Based Reinforcement Learning



Tabular Markov decision process

• A finite set of states 𝑆
• A finite set of actions 𝐴
• Reward is given at each state-action 

pair (𝑠,𝑎):
𝑟(𝑠,𝑎)∈[0,1]

• State transits to 𝑠′ with prob. 
      𝑃(𝑠′|𝑠,𝑎)

• Find a best policy 𝜋:𝑆→𝐴 such that

• 𝛾∈(0,1) is a discount factor

max
π

vπ = 𝔼π [
∞

∑
t=0

γtr(st, at)]

We call if “tabular MDP” if there is no structural knowledge at all



Episodic Reinforcement Learning

• Regret of a learning algorithm 

where T= NH, and the sample state-action path                         is 
generated on-the-fly by the learning algorithm 


Many many works: LQR (Abbasi-Yadkori & Szepesvári  2011), 
(Osband & Van Roy 2014), Deterministic (Zheng and Van Roy 
2013), Tabular (Jin et al 2018), (Russo 2019), Q learning with 
function approximation (Jin et al 2019), among many others


•

Regret𝒦(T ) =
N

∑
n=1

(V*(s0) −
H

∑
h=1

r(sn,h, an,h)),

𝒦

{sn,h, an,h}



Upper Confidence Model-Based RL (UCRL)

• UCRL alternates between two steps:


1. Confidence set construction: construct a confidence 
set  of the unknown transition model, based on 
experiences  


2. Optimistic planning:


 


Then use this optimistic policy in the next episode

B
(st, at, st+1, rt+1)

̂π = argmaxπ max
P∈B

VP(π)



Example 1: Deterministic continuous control

• Consider a deterministic system


• Metric: Suppose that the only structural knowledge we have 
is a metric dist over the state-action space


• Let  be the model class: Set of all deterministic and 
Lipschitz continuous (w.r.t. to metric ) transition models

𝒫
dist

maximizeπ

H

∑
h=1

r(sh, ah)

subject to sh+1 = f(sh, ah), ah = π(sh, h), s1 = s0 .

dist((s, a), (s′ , a′ ))



A Simple Metric-Based RL Algorithm

• At the beginning of the (n+1)th episode, suppose 
the samples collected so far are stored in a 
buffer


• Estimate Q values using nearest neighbor 
transitions  

• In the new episode, choose actions greedily by max
a

Qn,h(s, a)

Dn

Q(k+1)
H (s, a) ← min

(s′ ,a′ )∈D(k+1) (r(s′ , a′ ) + L ⋅ dist[(s, a), (s′ , a′ )])
Q(k+1)

h (s, a) ← min
(s′ ,a′ )∈D(k+1) [r(s′ , a′ ) + sup

a′ ′ 
Q(k+1)

h+1 ( f(s′ , a′ ), a′ ′ ) + L ⋅ dist[(s′ , a′ ), (s, a)]]



Regret Analysis

• Theorem The K-episode regret of the metric-RL algorithm 
satisfies


• d is the doubling dimension of s-a space 


• D is the diameter of s-a space


• Theorem The above regret bound is minimax optimal.

Regret(K) = O(DLK) d
d + 1 ⋅ H

(Learn to Control In Metric Space with Optimal Regret, Allerton, 2019. With Ni and Yang.)



Doubling Dimension

• Here  be the doubling dimension of the state space  
(smallest positive integer k such that every ball in the metric 
space can be covered by 2^k balls of half radius) 

•  


• For example: raw-pixel images of a video game belong 
to a smooth manifold and have much smaller 


• Metric-RL learns the manifold at the same time when 
solving the dynamic program. It captures the small 
intrinsic dimension automatically.

d

d ≪ raw dimension

d

d



Example 2: Feature space embedding of 
transition model

• Suppose we are given state-action feature maps 

• Assume that the unknown transition kernel can be fully embedded 
in the feature space, i.e., there exists a transition core M* such that


• A linear model for state-to-state prediction


•

M*ϕ(s, a) = 𝔼[ψ(s′ )] .

state, action ↦ [ϕ1(state, action), …, ϕd(state, action)] ∈ ℝN

state ↦ [ψ1(state), …, ψd′ (state)] ∈ ℝd′ 



The MatrixRL Algorithm

• At the beginning of the (n+1)th episode, suppose the samples collected so far are


• We will use their corresponding feature vectors.


• Estimate the transition core via matrix ridge regression


• However, using empirical estimate greedily would lead to poor exploration


• Borrow ideas from linear bandit (Dani et al 08, Chu et al 11, …) 

Mn = arg min
M ∑

n′ <n,h≤H

ψ⊤
n′ ,hK−1

ψ − ϕ⊤
n′ ,hM

2

2

+ ∥M∥2
F.

{(sn,h, an,h), sn,h+1} → {ϕn,h, ψn,h} := {ϕ(sn,h, an,h), ψ(sn,h+1)}

KψWhere           is a precomputed matrix



The MatrixRL Algorithm

• Construct a matrix confidence ball around the estimated transition core 


• Find optimistic Q-function estimate


where the value estimate is given by


• In the new episode, choose actions greedily by 


• The optimistic Q encourage exploration: (s,a) with higher uncertainty gets 
tried more often

Qn,h(s, a) = r(s, a) + max
M∈Bn

ϕ(s, a)⊤MΨ⊤Vn,h+1, Qn,H = 0

Vn,h(s) = Π[0,H][ max
a

Qn,h(s, a)]
max

a
Qn,h(s, a)

Bn = {M ∈ ℝd×d′ : ∥(An)1/2(M − Mn)∥F ≤ βn}

(RL in Feature Space: Matrix Bandit, Kernels, and Regret Bounds, Preprint, 2019)



Regret Bound for MatrixRL

• Theorem Under the embedding assumption and regularity 
assumptions, the T-time-step regret of MatrixRL satisfies with high 
probability thats


• First polynomial regret bound for RL in feature space. 


• Independent of S


• Minimax optimal? 


• It is optimal in d and T, close to optimal in H

Regret(T ) ≤ C ⋅ dH2 ⋅ T,

(RL in Feature Space: Matrix Bandit, Kernels, and Regret Bounds, ICML, 2019)



From Feature to Kernel Embedding of 
Transition Model

Regret(T ) ≤ O(∥P∥ℋϕ×ℋψ
⋅ log(T ) ⋅ d̃ ⋅ H2 ⋅ T)Theorem

RL regret in kernel space depends on Hilbert space norm of the transition kernel and 
effective dimension of the kernel space

(RL in Feature Space: Matrix Bandit, Kernels, and Regret Bounds, w. Lin Yang, 2019)

• Consider the more generic 
assumption: 


• The unknown transition probability 
kernel belongs to the product 
Hilbert spaces spanned by state/
action features: 


P ∈ ℋϕ × ℋψ



Example 3: Can we learn a more generic model? 



A motivating example: MuZero

End-to-end training; no prior knowledge of game rules; plan & explore with a learned 
model

(figure from MuZero paper, by DeepMind, Nature 2020)

A single algorithm generalizes to 60 games and beats the best player of each



• Key idea of Muzero: only try to predict quantities central to the game, 
e.g., value and policies 

• Let’s try to predict values only: Value-Targeted Regression (VTR)



Assumption of Value-Targeted Regression

• There exists a class of transition model  such that





•  is known


•  is generic


• Examples: linear models, non-linear models, sparse 
models, neural network models, physics models, etc. 

𝒫

P ∈ 𝒫

𝒫

𝒫



Value-Targeted Regression (VTR) for 
Confidence Set Construction

• Confidence Set


 


• 


•   


•  is the agent’s real-time value estimate


• The agent is training the model  to predict estimated value of next 
state

B = {P′ |L(P′ ) ≤ β}

L(P′ ) =
T

∑
t=1

(⟨P′ ( ⋅ |st, at), Vt⟩ − yt)2

yt := Vt(st+1)

Vt

P′ 



Full Algorithm of UCRL-VTR

• Let  parameterize the state-to-value predictor (which implies a transition model class )


• Let  be real-time value estimate at the beginning of a new episode


1. Whenever observing a new sample , update data buffer



2. Value-targeted nonlinear regression for model learning      


3. Planning using an optimistic learned model




• Implement  as the policy in the next run


• The target value function  keeps changing as the agent learns

θ 𝒫

̂V

(s, a, r′ , s′ )
D ← D ∪ {(x( ⋅ ), y)}  where x(θ) = 𝔼θ[ ̂V(s′ ) |s, a], y = ̂V(s′ )

̂θ = argminθ ∑
(x,y)∈𝒟

(x(θ) − y)2

θopt ← argmaxθ∈ℬVθ(s0), where ℬ = θ ∑
(x,y)∈𝒟

(x(θ) − x( ̂θ))2 ≤ β

̂π ← argmaxπVπ
θopt

(s0), ̂V ← V ̂π
θopt

,

̂π

̂V

(Model-based RL with Value Targeted Regression. with Szepesvari, Yang et al.  ICML, 2020)



Regret analysis of UCRL-VTR

Theorem: By choosing confidence levels  appropriately, the VTR algorithm’s regret 
satisfies with probability  that


                




where  is the Eluder dimension (Russo & Van Roy 2013) of the function class 


and  denotes the covering number of  at a the scale .


• A frequentist regret bound for model-based RL with a generic model family


Value-targeted regression is efficient for exploration in RL

{βk}
1 − δ

RK =
K

∑
k=1

(V*(sk
0) − V ̂πk(sk

0)) ≤ Õ( dimℰ(𝒫,1/KH)log 𝒩(ℱ,1/KH2,∥ ⋅ ∥1,∞)KH3)

dimℰ(𝒫,1/KH)

𝒩(𝒫, α,∥ ⋅ ∥1,∞) ℱ α



A Special Case

• Linearly parametrized transition model 


where each  is a base model 


• In this case, UCRL-VTR has regret bound


 


• Sparse linearly parametrized transition model 


• In this case, UCRL-VTR has regret bound


 

𝒫 = {∃θ : P =
d

∑
j=1

θjPj}
Pj

R(T ) ≤ d H3T

𝒫 = {∃θ : P =
d

∑
j=1

θjPj,∥θ∥0 ≤ s}

R(T ) ≤ H3dsT



Summary: Upper Confidence Model-Based RL

Use prior knowledges about the model (ie, the model class) to 
derive appropriate RL algorithms.


Complexity of the model determines the regret.


• Deterministic continuous control:



• Linear model: 


• More general model:


Regret(K) = O(DLK) d
d + 1 ⋅ H

Regret(T ) ≤ C ⋅ dH2 ⋅ T

RK ≤ Õ( dimℰ(ℱ,1/KH)log 𝒩(ℱ,1/KH2,∥ ⋅ ∥1,∞)KH3)

Thank you!


