
Regret Bounds of Model-Based Reinforcement Learning

Mengdi Wang

Joint work with Alex Ayoub, Chengzhuo Ni, Zeyu Jia, Csaba Szepesvari, Lin Yang

• We fit a model from some family

to experiences

• Then use the learned model for
planning and acting

We ask:

• How to “fit a model”?

• Regret guarantee?

P(s′ |s, a), P ∈ 𝒫

(st, at, st+1, rt+1)

Model-Based Reinforcement Learning

Tabular Markov decision process

• A finite set of states 𝑆
• A finite set of actions 𝐴
• Reward is given at each state-action

pair (𝑠,𝑎):
𝑟(𝑠,𝑎)∈[0,1]

• State transits to 𝑠′ with prob.
 𝑃(𝑠′|𝑠,𝑎)

• Find a best policy 𝜋:𝑆→𝐴 such that

• 𝛾∈(0,1) is a discount factor

max
π

vπ = 𝔼π [
∞

∑
t=0

γtr(st, at)]

We call if “tabular MDP” if there is no structural knowledge at all

Episodic Reinforcement Learning

• Regret of a learning algorithm

where T= NH, and the sample state-action path is
generated on-the-fly by the learning algorithm

Many many works: LQR (Abbasi-Yadkori & Szepesvári 2011),
(Osband & Van Roy 2014), Deterministic (Zheng and Van Roy
2013), Tabular (Jin et al 2018), (Russo 2019), Q learning with
function approximation (Jin et al 2019), among many others

•

Regret𝒦(T) =
N

∑
n=1

(V*(s0) −
H

∑
h=1

r(sn,h, an,h)),

𝒦

{sn,h, an,h}

Upper Confidence Model-Based RL (UCRL)

• UCRL alternates between two steps:

1. Confidence set construction: construct a confidence
set of the unknown transition model, based on
experiences

2. Optimistic planning:

Then use this optimistic policy in the next episode

B
(st, at, st+1, rt+1)

̂π = argmaxπ max
P∈B

VP(π)

Example 1: Deterministic continuous control

• Consider a deterministic system

• Metric: Suppose that the only structural knowledge we have
is a metric dist over the state-action space

• Let be the model class: Set of all deterministic and
Lipschitz continuous (w.r.t. to metric) transition models

𝒫
dist

maximizeπ

H

∑
h=1

r(sh, ah)

subject to sh+1 = f(sh, ah), ah = π(sh, h), s1 = s0 .

dist((s, a), (s′ , a′))

A Simple Metric-Based RL Algorithm

• At the beginning of the (n+1)th episode, suppose
the samples collected so far are stored in a
buffer

• Estimate Q values using nearest neighbor
transitions

• In the new episode, choose actions greedily by max
a

Qn,h(s, a)

Dn

Q(k+1)
H (s, a) ← min

(s′ ,a′)∈D(k+1) (r(s′ , a′) + L ⋅ dist[(s, a), (s′ , a′)])
Q(k+1)

h (s, a) ← min
(s′ ,a′)∈D(k+1) [r(s′ , a′) + sup

a′ ′
Q(k+1)

h+1 (f(s′ , a′), a′ ′) + L ⋅ dist[(s′ , a′), (s, a)]]

Regret Analysis

• Theorem The K-episode regret of the metric-RL algorithm
satisfies

• d is the doubling dimension of s-a space

• D is the diameter of s-a space

• Theorem The above regret bound is minimax optimal.

Regret(K) = O(DLK) d
d + 1 ⋅ H

(Learn to Control In Metric Space with Optimal Regret, Allerton, 2019. With Ni and Yang.)

Doubling Dimension

• Here be the doubling dimension of the state space
(smallest positive integer k such that every ball in the metric
space can be covered by 2^k balls of half radius)

•

• For example: raw-pixel images of a video game belong
to a smooth manifold and have much smaller

• Metric-RL learns the manifold at the same time when
solving the dynamic program. It captures the small
intrinsic dimension automatically.

d

d ≪ raw dimension

d

d

Example 2: Feature space embedding of
transition model

• Suppose we are given state-action feature maps

• Assume that the unknown transition kernel can be fully embedded
in the feature space, i.e., there exists a transition core M* such that

• A linear model for state-to-state prediction

•

M*ϕ(s, a) = 𝔼[ψ(s′)] .

state, action ↦ [ϕ1(state, action), …, ϕd(state, action)] ∈ ℝN

state ↦ [ψ1(state), …, ψd′ (state)] ∈ ℝd′

The MatrixRL Algorithm

• At the beginning of the (n+1)th episode, suppose the samples collected so far are

• We will use their corresponding feature vectors.

• Estimate the transition core via matrix ridge regression

• However, using empirical estimate greedily would lead to poor exploration

• Borrow ideas from linear bandit (Dani et al 08, Chu et al 11, …)

Mn = arg min
M ∑

n′ <n,h≤H

ψ⊤
n′ ,hK−1

ψ − ϕ⊤
n′ ,hM

2

2

+ ∥M∥2
F.

{(sn,h, an,h), sn,h+1} → {ϕn,h, ψn,h} := {ϕ(sn,h, an,h), ψ(sn,h+1)}

KψWhere is a precomputed matrix

The MatrixRL Algorithm

• Construct a matrix confidence ball around the estimated transition core

• Find optimistic Q-function estimate

where the value estimate is given by

• In the new episode, choose actions greedily by

• The optimistic Q encourage exploration: (s,a) with higher uncertainty gets
tried more often

Qn,h(s, a) = r(s, a) + max
M∈Bn

ϕ(s, a)⊤MΨ⊤Vn,h+1, Qn,H = 0

Vn,h(s) = Π[0,H][max
a

Qn,h(s, a)]
max

a
Qn,h(s, a)

Bn = {M ∈ ℝd×d′ : ∥(An)1/2(M − Mn)∥F ≤ βn}

(RL in Feature Space: Matrix Bandit, Kernels, and Regret Bounds, Preprint, 2019)

Regret Bound for MatrixRL

• Theorem Under the embedding assumption and regularity
assumptions, the T-time-step regret of MatrixRL satisfies with high
probability thats

• First polynomial regret bound for RL in feature space.

• Independent of S

• Minimax optimal?

• It is optimal in d and T, close to optimal in H

Regret(T) ≤ C ⋅ dH2 ⋅ T,

(RL in Feature Space: Matrix Bandit, Kernels, and Regret Bounds, ICML, 2019)

From Feature to Kernel Embedding of
Transition Model

Regret(T) ≤ O(∥P∥ℋϕ×ℋψ
⋅ log(T) ⋅ d̃ ⋅ H2 ⋅ T)Theorem

RL regret in kernel space depends on Hilbert space norm of the transition kernel and
effective dimension of the kernel space

(RL in Feature Space: Matrix Bandit, Kernels, and Regret Bounds, w. Lin Yang, 2019)

• Consider the more generic
assumption:

• The unknown transition probability
kernel belongs to the product
Hilbert spaces spanned by state/
action features:

P ∈ ℋϕ × ℋψ

Example 3: Can we learn a more generic model?

A motivating example: MuZero

End-to-end training; no prior knowledge of game rules; plan & explore with a learned
model

(figure from MuZero paper, by DeepMind, Nature 2020)

A single algorithm generalizes to 60 games and beats the best player of each

• Key idea of Muzero: only try to predict quantities central to the game,
e.g., value and policies

• Let’s try to predict values only: Value-Targeted Regression (VTR)

Assumption of Value-Targeted Regression

• There exists a class of transition model such that

• is known

• is generic

• Examples: linear models, non-linear models, sparse
models, neural network models, physics models, etc.

𝒫

P ∈ 𝒫

𝒫

𝒫

Value-Targeted Regression (VTR) for
Confidence Set Construction

• Confidence Set

•

•

• is the agent’s real-time value estimate

• The agent is training the model to predict estimated value of next
state

B = {P′ |L(P′) ≤ β}

L(P′) =
T

∑
t=1

(⟨P′ (⋅ |st, at), Vt⟩ − yt)2

yt := Vt(st+1)

Vt

P′

Full Algorithm of UCRL-VTR

• Let parameterize the state-to-value predictor (which implies a transition model class)

• Let be real-time value estimate at the beginning of a new episode

1. Whenever observing a new sample , update data buffer

2. Value-targeted nonlinear regression for model learning

3. Planning using an optimistic learned model

• Implement as the policy in the next run

• The target value function keeps changing as the agent learns

θ 𝒫

̂V

(s, a, r′ , s′)
D ← D ∪ {(x(⋅), y)} where x(θ) = 𝔼θ[̂V(s′) |s, a], y = ̂V(s′)

̂θ = argminθ ∑
(x,y)∈𝒟

(x(θ) − y)2

θopt ← argmaxθ∈ℬVθ(s0), where ℬ = θ ∑
(x,y)∈𝒟

(x(θ) − x(̂θ))2 ≤ β

̂π ← argmaxπVπ
θopt

(s0), ̂V ← V ̂π
θopt

,

̂π

̂V

(Model-based RL with Value Targeted Regression. with Szepesvari, Yang et al. ICML, 2020)

Regret analysis of UCRL-VTR

Theorem: By choosing confidence levels appropriately, the VTR algorithm’s regret
satisfies with probability that

where is the Eluder dimension (Russo & Van Roy 2013) of the function class

and denotes the covering number of at a the scale .

• A frequentist regret bound for model-based RL with a generic model family

Value-targeted regression is efficient for exploration in RL

{βk}
1 − δ

RK =
K

∑
k=1

(V*(sk
0) − V ̂πk(sk

0)) ≤ Õ(dimℰ(𝒫,1/KH)log 𝒩(ℱ,1/KH2,∥ ⋅ ∥1,∞)KH3)

dimℰ(𝒫,1/KH)

𝒩(𝒫, α,∥ ⋅ ∥1,∞) ℱ α

A Special Case

• Linearly parametrized transition model

where each is a base model

• In this case, UCRL-VTR has regret bound

• Sparse linearly parametrized transition model

• In this case, UCRL-VTR has regret bound

𝒫 = {∃θ : P =
d

∑
j=1

θjPj}
Pj

R(T) ≤ d H3T

𝒫 = {∃θ : P =
d

∑
j=1

θjPj,∥θ∥0 ≤ s}

R(T) ≤ H3dsT

Summary: Upper Confidence Model-Based RL

Use prior knowledges about the model (ie, the model class) to
derive appropriate RL algorithms.

Complexity of the model determines the regret.

• Deterministic continuous control:

• Linear model:

• More general model:

Regret(K) = O(DLK) d
d + 1 ⋅ H

Regret(T) ≤ C ⋅ dH2 ⋅ T

RK ≤ Õ(dimℰ(ℱ,1/KH)log 𝒩(ℱ,1/KH2,∥ ⋅ ∥1,∞)KH3)

Thank you!

