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Model-Based Reinforcement Learning

» We fit a model from some family

P(s'|s, a), Pe> value/policy
to experiences acting
lannin ;
(S Qpy Sy3 15 Tri 1) P J dlereLCt

e Then use the learned model for

planning and acting model experience
We ask: s
learning

e How to “fit a model”?

e Regret guarantee?



Tabular Markov decision process

A finite set of states
A finite set of actions A
Reward is given at each state-action
pair (s,a):
r(s,a)e[0,1]
State transits to s with prob.
P(s’1s,a)

Find a best policy 7:5— A such that

o0 5

max v* = E” Z y'r(s,a,)
" | =0
ye(0,1) is a discount factor

We call if “tabular MDP” if there is no structural knowledge at all



Episodic Reinforcement Learning

e Regret of a learning algorithm %

H

N
Regret,,(7) = ) <V*(s0) DT ah>>

where T= NH, and the sample state-action path {Sn,h, Cln,h} IS
generated on-the-fly by the learning algorithm

Many many works: LQR (Abbasi-Yadkori & Szepesvari 2011),
(Osband & Van Roy 2014), Deterministic (Zheng and Van Roy
2013), Tabular (Jin et al 2018), (Russo 2019), Q learning with
function approximation (Jin et al 2019), among many others



Upper Confidence Model-Based RL (UCRL)

e UCRL alternates between two steps:

1. Confidence set construction: construct a confidence
set B of the unknown transition model, based on

experiences (S,, A, Sy 1, I111)
2. Optimistic planning:

7 = argmax_max Vp(r)
PeB

Then use this optimistic policy in the next episode



Example 1: Deterministic continuous control

 Consider a deterministic system

H
maximizeﬂZ r(s,, a,)
h=1
SUbjGCt to Sha1 :f(Sh, ah), a, = ﬂ'(Sh, h), S1 = 9p-

 Metric: Suppose that the only structural knowledge we have
IS a metric dist over the state-action space

dist((s, a), (s, a"))

e Let & be the model class: Set of all deterministic and
Lipschitz continuous (w.r.t. to metric dis?) transition models



A Simple Metric-Based RL Algorithm

e At the beginning of the (n+1)th episode, suppose
the samples collected so far are stored ina D,
buffer

e Estimate Q values using nearest neighbor "}
transitions |

O V(s,a) — min (r(s',a)+ L dist(s,a), (s, )]

(s'.a)eD*+D

0 V) < min |r(s’a)+ sup O3 (fis'@).a) + L - distl(s'.a). (5. )|
(s’,aheD*+D a’ +1

* |n the new episode, choose actions greedily by max Q, ,(s,a)



Regret Analysis

e Theorem The K-episode regret of the metric-RL algorithm
satisfies

Regret(K) = O(DLK)7+7 - H

 dis the doubling dimension of s-a space
e D isthe diameter of s-a space

e Theorem The above regret bound is minimax optimal.

(Learn to Control In Metric Space with Optimal Regret, Allerton, 2019. With Ni and Yang.)



Doubling Dimension d

e Here d be the doubling dimension of the state space

(smallest positive integer k such that every ball in the metric
space can be covered by 2"k balls of half radius)

e d < raw dimension

* For example: raw-pixel images of a video game belong
to a smooth manifold and have much smaller d

 Metric-RL /earns the manifold at the same time when
solving the dynamic program. It captures the small
intrinsic dimension automatically.



Example 2: Feature space embedding of
transition model
Suppose we are given state-action feature maps
state, action — [¢,(state, action), ..., ¢ (state,action)] € RN

state — |y (state), ...,y (state)] € R4

Assume that the unknown transition kernel can be fully embedded
In the feature space, i.e., there exists a transition core M* such that

M*¢(s,a) = E[y(s")] .

A linear model for state-to-state prediction



The MatrixRL Algorithm

e At the beginning of the (n+1)th episode, suppose the samples collected so far are
{(Sn’ha an,h)D Sn,h+1 } — {¢n,h9 l/jn,h} = {¢(Sn,h9 an,h)’ l//(Sn,h+1)}
e We will use their corresponding feature vectors.

e Estimate the transition core via matrix ridge regression

: 2
+ [|M][%
2

M, = arg min Z

T -1 _ 4T
l//n’,hKl// n’,hM
M

n'<n,h<H

Where Kl,, IS a precomputed matrix

e However, using empirical estimate greedily would lead to poor exploration

e Borrow ideas from linear bandit (Dani et al 08, Chu et al 11, ...)



The MatrixRL Algorithm

e Construct a matrix confidence ball around the estimated transition core

B = {M R |[(A)AM = M)||, < ,/ﬁn}
* Find optimistic Q-function estimate

Q,.1(s,a) = r(s,a) + max ¢(s, a)'M ‘I’TVn,h 1 O

n,H = O
MeB,

where the value estimate is given by
Van(s) = [ max Q, ,,(s, a)]
a

* In the new episode, choose actions greedily by max Q, (s, a)
a

 The optimistic Q encourage exploration: (s,a) with higher uncertainty gets
tried more often

(RL in Feature Space: Matrix Bandit, Kernels, and Regret Bounds, Preprint, 2019)



Regret Bound for MatrixRL

Theorem Under the embedding assumption and regularity
assumptions, the T-time-step regret of MatrixRL satisfies with high
probability thats

Regret(T) < C-dH?-4/T,
First polynomial regret bound for RL in feature space.
Independent of S
Minimax optimal?

It is optimal in d and T, close to optimal in H

(RL in Feature Space: Matrix Bandit, Kernels, and Regret Bounds, ICML, 2019)



From Feature to Kernel Embedding of
Transition Model

COnS|der the more generlc Algorithm 2 KerzIMatrixRL: Reinforcement Learning with Kemels
. 1: Input: An cpisodic MDP environment M — &, A, P, 80,7, 1), kemel functicns kg, Lo,
assum tIOn: 2: otal nu rof episodes N, )
p ’: Inithll;l;:'unm?:nly I;Il:.ft”:'jﬁ = {}
4, forepsodene — 1,2,...,Ndo
S For (5,0a) 8 = 4, let
w(s,a) = Jhal(s.a) (s,0) k] (T +Ka, 7Yk, ;..
The unknown transition probability aniosa) e G, ol + Koy 1) Ko, 1(Koo (Ka,_,) “Keo;
kernel belongs to the product b Lt {Qna) bedsinedes o o
. (aa)eSx A: Qunusils.a)= an
Hilbert spaces spanned by state/ VAEH]: Quals,a) = r(5,2) + Tn(8,a) Vans: + Twale,a),
aCtion featu reS: e Vaa(e) =g "\ax(.:' “,,(5-,:)] Ys,a.n,h:

ané 1, isa parameter i be determinad,

% % 7 forstage i 1,2,...,4! do
P e ¢ X l// 8 Lct the current state be 5, 43
().

Play uction oy n = arg mexog 2 Qn.n(30.n,2);

10 Record the next stawe s..0—1: B ¢ BU {($ra, @0 4, S0 b~ ) 12
1 end for
12; end for

Theorem Regret(7) < O(HP”%X%w' log(T) - d-H?. ﬁ)

RL regret in kernel space depends on Hilbert space norm of the transition kernel and
effective dimension of the kernel space

(RL in Feature Space: Matrix Bandit, Kernels, and Regret Bounds, w. Lin Yang, 2019)



Example 3: Can we learn a more generic model?



A motivating example: MuZero

A single algorithm generalizes to 60 games and beats the best player of each

Shogi Go Atari
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End-to-end training; no prior knowledge of game rules; plan & explore with a learned
model

(figure from MuZero paper, by DeepMind, Nature 2020)



® Key idea of Muzero: only try to predict quantities central to the game,
e.d., value and policies

® Let’s try to predict values only: Value-Targeted Regression (VTR)

Canonical Value Target

Su

Input: (s, a,) Foreach: (s,a,)

‘ p

Planning » lanning
h Transition h Transition
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l predicts l predicts

St+1 V($41)

Input: V(s,)




Assumption of Value-Targeted Regression

There exists a class of transition model & such that
Pe &

P is known

P is generic

Examples: linear models, non-linear models, sparse
models, neural network models, physics models, etc.



Value-Targeted Regression (VTR) for
Confidence Set Construction

e Confidence Set

B = {P'|L(P)) < B}
T
L L) = ) (P Is.a). V) =y,
=1

o V= Vilsip)
o V. isthe agent’s real-time value estimate

e The agent is training the model P’ to predict estimated value of next
state



Full Algorithm of UCRL-VTR

Let 0 parameterize the state-to-value predictor (which implies a transition model class &)

Let V be real-time value estimate at the beginning of a new episode

. Whenever observing a new sample (s, a, r’, s'), update data buffer

D <DU{(x(-),y)) where x(0) = E,[V(s')|s,al,y = V(s")

Value-targeted nonlinear regression for model learning 0 = argmin,, Z (x(0) — y)2
(X V)ED

Planning using an optimistic learned model
(

N

O,p < argmax,.,Vo(sy), where % = § 6 Z x(0) — x(0))2 < p
(Xx,)ED

L J

h'd

7T« argmaxﬂVézpt(so), V « Vgopt,

Implement 7 as the policy in the next run

The target value function 1% keeps changing as the agent learns

(Model-based RL with Value Targeted Regression. with Szepesvari, Yang et al. ICML, 2020)



Regret analysis of UCRL-VTR

Theorem: By choosing confidence levels {3} appropriately, the VTR algorithm’s regret
satisfies with probability 1 — o that

K
Re= Y (V(sh) - Vish) < O(\/ dimg(P,1/KH)log N/ (F 1/KH| - ||, )KH®)
k=1

where dimy(S,1/KH) is the Eluder dimension (Russo & Van Roy 2013) of the function class

and N(P, a,|| - ||; ) denotes the covering number of # at a the scale a.

* A frequentist regret bound for model-based RL with a generic model family

Value-targeted regression is efficient for exploration in RL



A Special Case

d
Linearly parametrized transition model & = {EI@ P = Z (9]-Pj}
=1

where each PJ- IS a base model

* In this case, UCRL-VTR has regret bound

R(T) < dVH’T

d
Sparse linearly parametrized transition model& = {EIH . P = Z 0P, 10l < S}
j=1

e |n this case, UCRL-VTR has regret bound

R(T) <\ H3dsT



Summary: Upper Confidence Model-Based RL

Use prior knowledges about the model (ie, the model class) to
derive appropriate RL algorithms.

Complexity of the model determines the regret.

e Deterministic continuous control:
d
Regret(K) = O(DLK)a+1 - H

e Linear model: Regret(T) < C - dH? - \/7

e More general model:

R, < ()(\/ dimg(F 1/ KH)log N (F1/KH2|| - ||, . )KH?)

Thank you!



