RL VIRTUAL SCHOOL

MULTI-ARMED BANDITS

MONTE CARLO TREE SEARCH

TOR LATTIMORE

Menu

Part 1: Bandits (10am - noon)

- Finite-armed bandits
- Exploration/exploitation dilemma
- Optimism in the face of uncertainty
- Demonstration
- Contextual bandits

Part 2: Monte-Carlo tree search (2pm - 4pm)

- Monte Carlo tree search
- Practical

Please ask questions and I or one of the TA's will try to answer!

BANDIT PROBLEMS

- Reinforcement learning without (controlled) state
- Simplicity buys depth and practicality
- Many many (potential) applications
 - A/B testing
 - On-line advertising
 - Education delivery
 - Clinical trials
 - Tree search (see this afternoon)
 - Dynamic pricing
 - Network routing
 - Ranking
- Very active research topic

INTERACTION PROTOCOL

BERNOULLI BANDIT MODEL

- Finite horizon: Interaction lasts n rounds
- Finitely many actions: k actions
- **Binary rewards:** The reward when playing action a in round t is $R_{t,a}$ and has a Bernoulli distribution with **unknown** mean $\mu_a \in [0, 1]$
- Optimal action: $a^* = \operatorname{argmax}_a \mu_a$
- Mean payoff of optimal action: $\mu^* = \max_a \mu_a$

Dемо

A/B TESTING

EXPLORATION/EXPLOITATION DILEMMA

- Two arms k=2
- Small horizon n = 10
- You have played action one 5 times and received 3 wins
- You have played action two 2 times and received 1 win
- Looks like action one is better, but maybe not. Should you explore (play action two) or exploit (play action one)?

Act as if the world were as nice as plausibly possible

- In bandits, the only unknown is the mean reward for each action
- The **nicest plausible** bandit would have the largest means **consistent** with the data
- To make this formal we need to make rigorous the notions **plausible/consistent**

A DIVERSION ON ESTIMATION (CLT)

A DIVERSION ON ESTIMATION (HOEFFDING'S)

THE UPPER CONFIDENCE BOUND ALGORITHM

```
# play each action once
for a in range(bandit.arms()):
    bandit.play(a)
# iterate over remaining rounds
while bandit.rounds() < n:
    # compute vector of indices
    index = bandit.mean() + sqrt(0.5 / bandit.T() * log(bandit.rounds()))
    # find maximising index
```

a = argmax(index)

```
# play arm with largest index
bandit.play(a)
```

$$A_t = \operatorname{argmax}_a \hat{\mu}_a(t-1) + \sqrt{\frac{\log(t)}{2T_a(t-1)}}$$

Regret

Dемо

Quiz

Consider a bandit with means $(1/2, 1/2 - \Delta)$. What do you think the regret will look like as a function of $\Delta \in [0, 1/2]$?

- (a) The regret will increase as Δ gets large
- (b) The regret will decrease as Δ gets large
- (c) The regret will increase and then decrease as a function of Δ
- (d) The regret will decrease and then increase as a function of Δ

Dемо

WHAT IS GOING ON?

MINIMAX BOUNDS

MINIMAX BOUNDS

MINIMAX BOUNDS

THOMPSON SAMPLING

- A Bayesian approach
- Prior on the unknown mean of each arm
- Convenient choice for Bernoulli bandits is a ${\rm B}(\alpha,\beta)$ prior
- Posterior for mean of arm *a* in round *t* is

$$B_a(t-1) = B\left(\alpha + \sum_{\substack{s=1\\ \text{number of wins from } a}}^{t-1} \mathbf{1}_{A_t=a} R_t \quad , \beta + \sum_{\substack{s=1\\ \text{number of losses from } a}}^{t-1} \mathbf{1}_{A_t=a} (1-R_t)\right)$$

- TS samples $\tilde{\mu}_a(t-1)$ from $B_a(t-1)$
- Plays $A_t = \operatorname{argmax}_a \tilde{\mu}_a(t-1)$

THOMPSON SAMPLING IN PICTURES

Dемо

BAYESIAN OPTIMALITY

- Thompson sampling uses the posterior to quantify uncertainty and introduce exploration
- Bayesian optimal policy maximises

$$\mathsf{E}\left[\sum_{t=1}^{n} R_{t,A_t}\right]$$

- Believed to be computationally hopeless but...
- When $\gamma \in (0,1)$ the policy maximising

$$\mathsf{E}\left[\sum_{t=1}^{\infty} \boldsymbol{\gamma}^{t} R_{t,A_{t}}\right]$$

can be approximated in polynomial time

- Keyword is Gittins' index
- Beautiful, empirically superb, hard to analyse and a little brittle

ADVERSARIAL BANDITS

- All models are wrong
- What if rewards are not really random?
- Remarkably, you can relax all assumptions on the data!
- Let $(R_t)_{t=1}^n$ be an arbitrary sequence of reward vectors, $R_t \in [0,1]^k$
- Best action in hindsight is a^{*} = argmax_a ∑ⁿ_{t=1} R_{t,a}
- Regret is $\mathfrak{R}_n = \mathbb{E}\left[\sum_{t=1}^n R_{t,a^*} R_{t,A_t}\right]$
- There exists an algorithm such that $\Re_n \leq \sqrt{2nk}$

CONTEXTUAL BANDITS - EXAMPLE

User's arrive at my on-line site sequentially and I want to use a bandit algorithm to choose the centerpiece product to recommend

USER INFORMATION

Age, gender, previous products purchased,...

PRODUCT INFORMATION

Many (similar products)

CONTEXTUAL BANDITS

- Let ${\mathcal C}$ be a set of all possible contexts
- In round *t*, observe $C_t \in C$
- Standard idea design feature mapping $\varphi:[k]\times\mathcal{C}\rightarrow\mathbb{R}^d$
- Assume $R_{t,a} = \langle \varphi(a, C_t), \theta \rangle + \eta_t$ for some unknown $\theta \in \mathbb{R}^d$

CONTEXTUAL BANDITS

- Let C be a set of all possible contexts
- In round t, observe $C_t \in C$
- Standard idea design feature mapping $\varphi: [k] \times \mathcal{C} \to \mathbb{R}^d$
- Assume $R_{t,a} = \langle \varphi(a, C_t), \theta \rangle + \eta_t$ for some unknown $\theta \in \mathbb{R}^d$
- Simplified view The learner receives $\mathcal{A}_t = \{\varphi(a, C_t) : a \in [k]\} \subset \mathbb{R}^d$
- Plays action $A_t \in \mathcal{A}_t \subset \mathbb{R}^d$
- Reward is $\langle A_t, \theta \rangle + \eta_t$

LEAST SQUARES

CONCENTRATION BOUNDS

UCB FOR CONTEXTUAL BANDITS

REGRET ANALYSIS

REGRET ANALYSIS

REGRET ANALYSIS

THOMPSON SAMPLING FOR CONTEXTUAL BANDITS

What did I not talk about (much)?

- Adversarial model
- Fully Bayesian approaches (Gittin's index)
- Combinatorial bandits
- Practical problems
 - Non-stationarity
 - Delayed/anonymous rewards
 - Non-linear contextual bandits
 - Constraints
- Off-policy evaluation/optimisation
- Pure exploration
- Partial monitoring
- Scaling up to RL

Monte Carlo Tree Search

TWO PLAYER ZERO SUM EXTENSIVE FORM FULL INFORMATION GAMES

- Players make moves alternately until the game ends
- The utility for the second player is the negative of the utility of the first (zero sum)
- No hidden information. The available moves/utility only depends on the moves of the players

Examples, Connect4, Checkers, Chess, Go

Non-examples

- Stratego (not full information)
- Poker (not full information and randomised)
- Kalah or Backgammon (randomised)

GAME TREES

MINIMAX SEARCH

ALPHABETA SEARCH

DEPTH-LIMITED MINIMAX/ALPHABETA

WHY NOT CLASSICAL SEARCH?

WHY NOT CLASSICAL SEARCH?

- They are hard(ish) to make selective
- Especially in games with many actions and long-term consequences (e.g., Go)
- ~ 400 moves in Go compared to ~ 30 in Chess
- Historically, MCTS was less effective in 'tactical' games like Chess
- MCTS and AlphaBeta seem about equally good in chess now

MONTE CARLO TREE SEARCH

- Builds a selective tree
- Simple to implement
- Simple to parallelise (AB is hard to parallelise)
- Simple to incorporate knowledge (or ML)

MONTE CARLO TREE SEARCH IN PICTURES

```
# start with root an empty tree
while time_left():
  # traverse the current tree to a leaf
  node = find_leaf(root)
  # expand one child of that leaf
  node = expand_leaf()
  # compute a rollout until the end of the game
  result = rollout(node)
  # update the path back to the root
  while (node != root):
    node.update(result)
    node = node.parent()
return select_move(root)
```

FIVE COMPONENTS

- Finding a leaf from the root
- Expanding a leaf
- Computing a rollout
- Updating nodes on the path back to the root
- Choosing a move from the root node

CONNECT4

CONNECT4

- Connect4 is a forced win for the first player
- Solved in 1988
- Solved by a modern alpha-beta search in less than a second now
- Illustrates some of the benefits of MCTS

THEORY

EXTENSIONS AND MODIFICATIONS

COMBINING MCTS WITH ML

Thanks!