DeepMind

Deep O-Networks
and
Its Variants

Bilal Piot and Corentin Tallec

01/04/2021

O

DeepMind

Programme of the talk

O

Programme of the talk

Part 1: DON Deep O-Networks

O

Context and History:
m Context

m The milestones: from Value Iteration to DQN

m Environment and Results

Theory:
m Reminder of the Value lteration algorithm

m Approximate Value lteration
m Neural Fitted-Q algorithm
m From Neural Fitted-Q to DQN

Practice:
m Overview of a DQN Implementation

O

Programme of the talk

® Part 2: DON and Its Variants

o DQN and its variants: an overview of the literature:
m Algorithmic Improvements:
e DDQN
e Prioritized Replay
e Distributional RL
m Architectural Improvements:
e Dueling DQN
e Distributed Agents
m Memory:
e Working Memories
e Episodic Memories
m Exploration:
e Never Give Up Agent
m Meta Controllers:
e Bandit
e Meta-gradient RL

m Agent57: Combining all the known improvements.

O

DeepMind

Part 1: DON
Deep O-Networks

O

DeepMind

Context and History

o

Context

e Control Theory:
o Aims at guiding “safely” and “rapidly” a dynamical system to a desired state.
o Has been one of the major advances in engineering in the 20th century:
m Aviation
m Manufacturing
m Electronics
m Energy
o Works extremely well when those conditions are met:
m Knowledge of the state variables (features)
m Knowledge of their dynamics

e Reinforcement Learning (RL):
o Ageneral paradigm for control theory when the model of the world is unknown.
o Has the potential to tackle complex control theory problems:
m High dimensional state-action spaces
m Partial observability
o Deep Q-Network was one of the papers that reignited the interest in RL as a general solution to
control theory.

O

Milestones: From Value Iteration to DON

Value Iteration in stochastic games (Shapley 1953) and Markov decision processes (Bellman 1957):
o Computes the optimal value of an MDP.
o The proof relies on fixed-point theory: Banach contraction theorem (1922).

e Approximate Value Iteration:
o Bounds in infinity norm: Bertsekas and Tsitsiklis (1996)
o Bounds in Lp norm: Munos (2007)

e Fitted-Q Algorithms:
o Fitted-Q with random forests: Ernst (2005)
o Neural fitted-Q: Riedmiller (2005)

e Atari as an environment:
o ALE: Bellemare (2012)

e Deep O-Network:
o Scaling Neural fitted-Q to Atari games: Mnih (2013)

O

https://hal.inria.fr/inria-00124685/document
https://jmlr.org/papers/volume6/ernst05a/ernst05a.pdf
http://ml.informatik.uni-freiburg.de/former/_media/publications/rieecml05.pdf
https://arxiv.org/pdf/1207.4708.pdf
https://arxiv.org/pdf/1312.5602.pdf

The Environment: ALE

The Arcade Learning Environment (ALE) is the environment chosen for DON:

e Around 50 Atari games

e Raw observations:
o RAM: 128 bytes (0-255)
o 2D-RGB image: 160x210x3, 100 800 bytes
e Raw actions: 18 discrete actions (0-17)
e Rewards: deltas of the score of the game
e Frequency: 60 Hz
e Length of a game: 30 minutes or more
e Why is it interesting:
o Huge state space

o No canonical meaningful features
o Very long optimization horizon

https://sites.google.com/corp/view/agent57

Preprocessing:

The algorithm DON is almost end to end:

Environment: (N\ (\ (\ \
Image: [160, 210, 3] 0O¢—3 Ot—9 Ot+—1 Ot
RAM: 128 bytes L)L JAN JL)
R R R T

4 AW 4 AW 4 AW 4 \
Preprocessing:
image: (54,8411 | P(0t=3)[|#0e—2)|[d(ot-1)[| &(o¢)

- — \ —/ \\ J \\ J
Stacking: Ty

Input: [84, 84, 4]

e Preprocessing ¢ of an observation is done in this order (Reduce the computation):

7’1—1
Qg
DQN —>

o No RAM state in the observation, keep only the image: [160, 210, 3]

o Take the maximum for each pixel of image at time t and t-1: [160, 210, 3]

o Extract the luminance from the RGB: [160, 210, 1]
o Downscale the image to 84x84: [84, 84, 1]

Output: (0-17)

e Stacking of the 4 previous preprocessed observation (Reduce the partial observability): [84, 84, 4]
e The stack of the preprocessed observation is the input of the DON algorithm.
e The output of DON is the action at 15 Hz frequency which means that there is an action repeat of 4.

O

The results:

Star Gunner
Robotank
Atlantis
Crazy Climber
Gopher
Demon Attack
Name This Game
Krull
Assault
Road Runner
Kangaroo
James Bond
Tennis

Pon
Space Invaders
Beam Rider
Tutankham
Kung-Fu Master
Freeway
Time Pilot
Enduro
Fishing Derby
Up and Down
Ice Hockey
Q*bert
HER.O.

At human-level or above

Asterix

Battle Zone

Wizard of Wor
Chopper Command
Centipede

Bank Heist

River Raid

Zaxxon

Amidar

Alien

Venture

Seaquest

Double Dunk
Bowling

Ms. Pac-Man
Asteroids

Frostbite

Gravitar

Private Eye |2
Montezuma's Revenge |Jo%

Below human-level

ear learner

1
4,500%

Reminder of the Value Iteration (VI) Algorithm:
Theoretical setting.

We consider the control problem in a finite Markov Decision Process

States: x € X

Actions: a € A

Reward function; R(z,a), R eR**A
Transition kernel: P(y|z,a), P e AY*A
Discount factor: v €]0, 1|

We are looking for a stationary policy 7(alz), m € A%

that maximises the expected discounted sum of future rewards represented by the state-action value function:

QW(LE‘,CL) — ETNTw,a,w ZVTLR(XTMA?%)

n>0

where 7?1; ,a,7r is the distribution over trajectories 7 — (X ns An)nEN following policy 7T and starting

from (Xo, Ao) = (33, a).

O

Reminder of the Value Iteration (VI) Algorithm:
Formulation

Let us define the optimal Bellman operator :

[T*Q|(x,a) = R(z,a) +7 Z P(y|z,a) rgleaj(Q(ya b)

This operator is a contraction, therefore H!Q* such that Q* — T*Q*
In addition, Q* corresponds to the maximum of the state-action value function: Q* = max QW
T

* . . .
To compute Q one can follow the contracting discrete scheme called Value Iteration:

Initialisation: (), ¢ RY*A

Virecurrence: Vk >0, Qi1 =T "Qx

lim Q= Q"
k—o00

O

Real-world setting: Interactive Environments

From Value Iteration to Approximate Value
I[teration
PROBLEM: Applying the VIrecurrence (41 = T*Q i is impossible in a real-world setting:
e State-action spaces can be too large!

e Dynamics are not fully known!
e States and actions can't be trivially collected, they need to be reached by a non trivial policy (locality

problem).

However, the optimal Bellman operator can be evaluated on a known dataset of already visited transitions:
T = (mnv Qp,Tn = R(:L‘n, an)v Yn ~ P(|$na an))lgngN

The evaluations (also called targets) t,, = r,, + v max Q(yn,b) are unbiased estimates of [T*Q](zr, an)
(S

Therefore, we can build the following regression dataset: D(7,7*Q) = {(@n,an), tn}1<n<n

D(T.1°Q) —(e = [17

ervg =T17Q — T*Q

O

Reminder on Regression

In regression, we have:
e asetofpoints T = {x, € X}1<n<n

e and noisy but unbiased estimates {t,, € R}1§n§ n also called targets of a function f € RX
The goal is to retrieve this function with minimal error. More precisely:

* tn = f(zn) +n(xn) vith Eln(z,)] =0

From the dataset D(T, f) = {Zn, t } {1<n< N} a regression algorithm output a function f c RY.

A

The regression error is defined as ¢ f = f — f . One instantiation of a regression algorithm is:

(")

f—argmmZ[, (), tn)

\ _/
with regression loss C p— ()2 and functional space f’ C R‘X

o

Approximate Value Iteration step seen as a

regression

ﬂ:gression Notations \

feRY-

T*Q c RXX.A

T ={zn € X}1<n<n=

tn, = T + vrgleajcQ(yn, b)

b = f(xn) + n(xn)ﬁ

ﬁppmximate VI step Notations \

T =A{n,an,™n, Ynti<n<N

— T*Q[Jjn, an] + 77(37717 a'n)

D(T, f) ={zn, ta} f1<n< N}

feRY-

'T*Q c RXX.A

\Efo—f

ET*Q — T*Q — T*Q

‘D(Tv T*Q> = {(Inv an)v tn}lgngN

/

O

Approximate Value Iteration (AVI): Formulation

(Initialisation: QO - RXX'A)
AVI recurrence: \V/k‘ Z O, Qk_|_1 — T*Qk
.

The AVI recurrence step consists in two steps:

1. Build a regression dataset:

a. Collect a dataset of transitions: T = (z,,, an, 7 = R(%n,an), Yn ~ P(|Tn,an))1cpen

b. Compute unbiased estimates of the optimal Bellman operator:tn,k =Tn+7 rglzﬁc Qk (yn, b)
€

c. Create the regression dataset: D(7T, T Q) = {(n, an), tn.k f1<n<nN

2. Apply aregression algorithm of your choice:

D(T.T"Qu) —— ez L 720, o

er = T"Qr — T*Qy

Approximate Value Iteration (AVI): Bounds

Let € = sup ||éx||co be the supremum in infinite norm of the regression errors and let us define
kEN

the greedy policy:

7k (x) = argmaxQy(x, a)
acA

then, we have the following bound:

limsup ||QF — Q™ || <
w0~ Q7 o < T

This is a bound in infinite norm, for tighter bounds with other norms see:

e Munos 2007: https://hal.inria.fr/inria-00124685/document
e Scherrer 2014: https://hal.inria.fr/hal-01091341/document

O

https://hal.inria.fr/inria-00124685/document
https://hal.inria.fr/hal-01091341/document

Neural Fitted-Q: Intro and Notations

Neural Fitted-Q (Riedmiller 2005) is an instantiation of AVI where the regression algorithm have the
following properties:

The functional regression space is parameterized by a neural network.

The loss function is a squared-like loss.

The optimizer is SGD-based (Rprop for the original but could be Adam).

The data used for regression was often a fixed batch of data.

Fo = {Qql0 € RV} Qr = Qo,

_

Initialisation: QQO -]RX XA
Neural Fitted-Q 1%
recurrence; \V/k Z O, Q9k+1 — T Qek

J

o

Neural Fitted-Q: original pseudo-code.

NFQ_main() {

input: a set of transition samples D; output: Q-value function Qn

Initialisation: p k=0
» Do {
Neural Buildine th generate_patternset P = {(z'nputl, targetl),l =1,...,#D} where:
uilding the . LT
Fitted-Q regression dataset input - 4 7uz e . p
Recurrence: Regression target’ = c(s’,u’,s") +yminyQr(s", b)
alg%)rithm Rprop_training(P) — Qg+1
k:= k+1

} WHILE (k < N)

Fig. 1. Main loop of NFQ

Neural Fitted-QO: an overview.

The Neural Fitted-Q recurrence follows the same pattern as the AVI one:

1. Build the regression dataset:
a. Collect a dataset of transitions: 7 = (zn, @n,Tn = R(Zn,an), yn ~ P(.|2n, an))1gn§N

b. Compute unbiased estimates of the optimal Bellman operator:t,, x = 7 + 7y Ilflea% Qo, (yn, b)
c. Create the regression dataset: Dy, = D(T,T*Qo,) = {(®n,an), tnk}1<n<n

2. Apply regression with squared loss and optimize it with an SGD-based optimizer:

L0, D) =By) 1, | (Qol,a) — 1)’]

0r+1 = Optiargmin L(6, Dy)
0 RN

O

Neural Fitted-Q: in details.

Here we show how we compute in details the regression Orp1 = Optlar%mm L (9 D k)
feR

The expected squared loss £(6, D) will be approximated by £ (0, By) where B is a batch of data.

Then, the optimization will consists of a fixed number of SGD-like steps performed by an optimizer:
1. Initialisation: 6 = 60 k

2. For0<i< I
a. Draw uniformly a batch of transitions from the dataset: (ZUJ, Qj,75, y])1<j<B ~T

b. Compute the targets: ¢, =1, + ’YIgle&}ii Qo, (yj, b)
c. Form the regression batch: Bk = {(xj, a,j), tj k:}1<j<B

B
1
d. Compute the loss: L(6, By) = g { (Qo(zj,a;) tj7k)2:|
J=1

e. Take a SGD-like step: 0+ 60—« Optimizer(Vg,C(H, Bk))

3. Update the parameters: 011 = 0

o

From Neural Fitted-Q to DON

From Neural Fitted-Q to DON, only some small changes but a 8 year gap:

e Data collection: going from a batch dataset to a replay buffer filled by the online policy. Acting and
Learning are done simultaneously.

e Architecture: Bigger neural network architecture.

e Optimization: Using RMSprop.

Some vocabulary introduced by DON but the underlying concepts were already existing:
e Online network: The neural network that optimizes the loss. Q 0
e Target network: The neural network of the previous AVl iteration with fixed weights. Q O
e Online policy: The policy that collects the data. 7T0
e Replay buffer: The collections of transitions from which the batches are samples. T

e Update period: How many steps of gradients are taken before going to the next AVI iteration. [

O

DON: an overview

Transition

4)
Replay Buffer(FIFO)
Batch _ T _J
4)
Neural Fitted-Q
Action
Qo

Environment

O

DON: the data collection (Acting).

In DON, the data is collected via the epsilon-greedy online policy:

Greedy-policy: 7Tg (:E) = argmaXQg(x . CL)
acA

Uniform policy: 7T/

Epsilon-greedy policy: 7Tg . =
Y

(1 —€)mp + emy

Start an episode at L() and collect an episode following the policy 79,¢ :

(xna Ap, ™ 779,6(3711)7 7°(xn, an)a Yn = Tn+41 P(lﬂ?n, an))lSnSH

:

-

Replay Buffer (FIFO)

T

~N

O

DON: the regression step (Learning).

Here we show how we compute in details the regression 61 = Optiargmin £(60, Dy)
RN

Then, the optimization will consists of a fixed number of SGD-like steps performed by an optimizer:
1. Initialisation: 6 — € k

2. For0<:<]:
a. Draw uniformly a batch of transitions from the replay: (xj, aj, Ty, yj)lngB ~T

b. Compute the targets: tr =17, + 7%163% Qo (y5,b)
c. Form the regression batch: [3; — {(ajj, aj), tj k:}1<j<B

1

Mou

d. Compute the loss: L(6, By,) = [Qo(xj,a;) tj,k)z]

j:l
e. Takea SGD-like step: <— 0 — av Optimizer(VoL(0, By))

3. Update the parameters: ¢9k+1 =0

o

DON: Architecture.

o

DON Zoo Codebase

Material:
e The DON Zoo codebase

Information:
e The codebase is open source and developed by DeepMind (John Quan and Georg Ostrovski)

The code is in Python, JAX, Haiku and Rlax.

e [t tries to reproduce results of DON and some of its variants on Atari:
o DQN
o DDQN
o Prioritized Experience Replay

e (Can be installed on a machine with a single GPU
e Comes with a run function and plotting tools
e Each agent comes with:

o Aclass describing the agent

o Arun function
o Atest function

O

https://github.com/deepmind/dqn_zoo
https://github.com/google/jax
https://github.com/deepmind/dm-haiku
https://github.com/deepmind/rlax

Inspecting the DON code

Questions:

In which file the learning/interaction loop is implemented?
In which file the DON agent functions are defined?

In which library can I find the DON loss?

How the networks parameters are updated?

How is the replay implemented?

Where is the preprocessing done?

o

Exercice

From the DON code write its pseudo code.

o

DeepMind

Part 2: DON
and its vVariants

O

DeepMind

ON and its variants:
overview of the literature

O

Improvements to DON

Since 2015, several improvements have been made:

e Algorithmic improvements:
o Double DQN
o Prioritized replay
o Distributional RL

e Architectural improvements:
o Dueling architecture
o Distributed setting

e Memory additions:
o Working memories: LSTM, GRU
o Episodic memory

e Exploration mechanisms:
o An entire literature on this topic has been developed since the 90’s

e Meta-controller:

o Bandits @
o Meta-gradients

o Population-based training

https://deepmind.com/blog/article/Agent57-Outperforming-the-human-Atari-benchmark

Double DON (DDON)

Material:

e Double O Learning paper
e Double DON paper

The Problem: O Learning has been shown to overestimate its targets, because it uses a single estimator for estimating
the QO values and choosing the maximum over actions.

The Solution: To overcome this, Double Q Learning uses a double estimator technique.

The double estimator technique disentangle the estimation of the Q values from the choice of the maximum over the
actions:

e The target network is used for estimation.
e The online network for choosing the greedy action.

tik =15+ ’Yrglgi‘: R0, (Yj,b) becomes tik =1 +7Q0, (yj, a;fﬁ)where a;e = argmax Qg(yj, b)

bec A @

https://papers.nips.cc/paper/2010/file/091d584fced301b442654dd8c23b3fc9-Paper.pdf
https://arxiv.org/pdf/1509.06461.pdf

Prioritized Experience Replay

Material:
e Prioritized Experience Replay paper

The Idea: Prioritize transitions with high TD errors and weight those transitions adequately to
eliminate the introduced bias.

TDerror: 05 k — T4 + f}/QQk (yja a’;ﬁ) T Qe(xj7 a“])

Priority: pj — |5j,]€| + €

(6%
- : p;
Probability of being selected: Pj ==
Zn p n
(NP;)=F
Loss reweighting: W; —= ——————
max, Wy,

o

https://arxiv.org/pdf/1511.05952.pdf

Dueling Architecture

Material:
e Dueling network architecture

The Idea: Decompose the Q value into a state-dependent part and a state-action dependent part.

The effect: This allows to share the state-dependent estimations (good for actions that are less chosen), focuses in
estimating the state-action dependent part (good for relative ranking of the actions).

=

= _'_' l Qo(5,0) = Vio, (5) + Ag . (5,a) — ﬁ P IRER)

https://arxiv.org/pdf/1511.06581.pdf

Distributional RL

Material:
e (ategorical Distributional RL, paper
e Implicit Quantile Network paper
e Dopamine Blog

The Idea:
e Learn the distribution of the discounted return.
e Still act according the expected discounted return.

Why it works:
e Learning the full distribution is a natural auxiliary task for better representation learning.

Distribution of returns of a given policy: zZ" (.’13, CL) = E Y "R (X ns An)
n>0

Distributional Bellman Operator: T* Z (xX, a) = R (X, a,) —|— ’y Z (}/7 CL*)

a* = argmaxE[Z (Y, b)]
be A

O

https://arxiv.org/pdf/1707.06887.pdf
https://arxiv.org/pdf/1806.06923.pdf
https://deepmind.com/blog/article/Dopamine-and-temporal-difference-learning-A-fruitful-relationship-between-neuroscience-and-AI

Distributional RL in a nutshell!

To learn a distribution of a real random variable you need to learn the cumulative distribution function:

Normal CDF

0.754

probability

0.54

Fy(z) = P(X <)

Categorical approach: Learning the probabilities by counting!
]E[lx<x] — P(X S 33)

Quantile approach: Learning the quantiles with quantile regression!

Qx(7) :F)zl(T) =inf{x: Fx(x) > 7} o)

Results for DON-based non-distributed agents

Median human-normalized score

200% -

100% -

0% -

— Rainbow

— QN

—— QR-DQN

— C51

—— Prioritized DQN
—— Double DQN
—— DQN

1 I
50 100 150 200
Frame (millions)

o

Results for DON-based non-distributed agents

Median

300

250

200

150

100

50

®

o)
==

f
[

%

B) (5‘9
(B

2015 2016

Classic Deep RL

DQN (Mnih et al.)
' DDQN (van Hasselt et al.)
- Prioritised DQN (Schaul et al.)

(D) Dueling (Wang et al.)

4

nl% Prioritised Dueling (Wang et al.)

{2 Bootstrapped DQN (Osband et al.)

@ NoisyNet Dueling (Fortunato et al.)

2017 2018

Publication date

Distributional RL

0 C51 (Bellemare et al.)
o QR-DQN (Dabney et al.)
o Rainbow (Hessel et al.)
0 IQN (Dabney et al.)

@ c51-1DS (Nikolov et al.)
@ rar (vang et al)

2019

O

Distributed Setting

The Idea: Decoupling the learning from the data collection.

&

ACTORS

<7

Network
weights

Agent transitions
& initial priorities

s
1
5T
A

LEARNER

Prioritised sampling

Updated priorities

o nin
0

REPLAY BUFFER

O

Working Memory

Material:
° R2D2 paper

The Idea:

e Use arecurrent neural network to tackle the partial observability problem.

https://openreview.net/pdf?id=r1lyTjAqYX

R2D2 results

2000%
®R2D2(120h)
®R2D2(72h) Atari-57 - Human-normalized Median
2000%
1500%
3 g 1600% | === R2D2 FF
8@ —= Ape-X
N ®R2D2(48h) 12009 | ™= Rainbow
£ g 1000% wems Reactor
Xe)
Tc 800%
52 ®R2D2(24h)
E o
=
- . 400%
200%| CR2D2(12h) _ape-x (120h)
° OApe-’((70h) 57:7#\
Ape-X (20h) 0%
IMPALA(deep) eRainbow 10’ 108 10° 10%°
¢ Reactor ®Prio.DQN # Environment Frames (Log-Scale)
® IMPALA(shallow) © DQN G
0% b
°0 50 100 150 200 250 300

Training Time (Hours)

Exploration

Reinforcement Learning is not only about maximizing the known rewards (exploitation) but also about
finding new rewards (exploration).

Exploration mechanism in DON: epsilon-greedy TH e = (1 — €)’7’(‘ o + €Ty

There is an entire literature on improving this basic exploration mechanism:
e Uncertainties estimation: Use the uncertainty about the world as an incentive for exploration.

o State uncertainty: Random Network Distillation

o Future uncertainty: Prediction error

o Model uncertainty: Model disagreement

o Value uncertainty: Uncertainty Bellman Equation

e Entropy maximisation:

o Episodic entropy maximisation: Never Give Up

o Global entropy maximisation: Geometric Entropy Maximisation

O

https://arxiv.org/pdf/1810.12894.pdf
https://pathak22.github.io/noreward-rl/resources/icml17.pdf
https://arxiv.org/pdf/1906.04161.pdf
https://arxiv.org/pdf/1709.05380.pdf%5D
https://arxiv.org/pdf/2002.06038.pdf
https://arxiv.org/pdf/2101.02055.pdf

Never Give Up Episodic bonus

Build controllable states: self-supervised inverse dynamics model
p(alme, Te41)

Compute an estimate how familiar is a given state. dassifier Fy. é
episodic 1 :
; —
E renon K@)) Zam

—_——— = = —>£ !

<“---->

. . /
eplsghe'ﬁovelty module

_______________________ |
: / k-nearest |
neighbors |
: /controllable state . |
I

episodic
t

Never Give Up: complete exploration bonus

. 'RND random network |
life-long novelty ~

|
: l g multiplicative
p(a‘xto.,l't-u) module _l_>[I% — > o : modulation
’ ——O— 1}
classifior /i, R | g | A &
A L —_ {
_
; E RND prediction network :
embedding Fiiiiiiiiiiiiiii _____________
network [k-nearest
i [neighbors
N <----> [controllable state
. [episodic
Or

—— t

episodic novelty
module

Meta-Controller

Rewards:
Episode Score

O

Agent57: Combining most improvements

Agent57 combines:
e Prioritized replay

Dueling architecture

e Separated Q values, one for exploration and the other for exploitation

e Distributed actors

e Episodic Memory

e Working Memory conditioned on hyperparameters optimized by the Meta-Controller
e Exploration: Never Give Up

e Meta-Controller: Bandit

O

http://proceedings.mlr.press/v119/badia20a/badia20a.pdf

Agent57: results

100

g ® : e 2
d 3 AEllE £
£ P clEES ‘ 2 ﬂ
= £ a0 HEE g
3 FHENE £
A @ <lB] [w A
@ g I
d g 3
o 5 =
— = [=]
; i 5 10 2
g 0 ---- Optimal E
= —— Agent57 E 20
“ — R2D2 g
NGU =|
MuZero 0 1 2 3 4 5 6 7 8 9
30 | Number of frames lel0
1 2 3 4 <) 6 7 8 9
Number of frames lel0
Statistics Agent57 R2D2 (bandit) NGU R2D2 (Retrace) R2D2 MuZero
Capped mean 100.00 96.93 95.07 94.20 94.33 89.92
Number of games > human 57 54 51 52 52 51
Mean 4766.25 5461.66 3421.80 3518.36 4622.09 4998.51
Median 1933.49 2357.92 1359.78 1457.63 1935.86 2041.12
40th Percentile 1091.07 1298.80 610.44 817.77 1176.05 1172.90
30th Percentile 614.65 648.17 267.10 420.67 529.23 503.05
20th Percentile 324.78 303.61 226.43 267.25 215.31 171.39 “
10th Percentile 184.35 116.82 107.78 116.03 115.33 75.74
5th Percentile 116.67 93.25 64.10 48.32 50.27 0.03

