Efficient Motor Skill Learning in Robotics
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Overview

= Learning from Demonstrations

= Reinforcement Learning in Robotics
= Human Robot Interaction Learning

= Complex Manipulation Task Learning




Imitation Learning
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Imitation Learning in Robotics:
Generation vs. Generalization

A different intermediate goal

Reaching to a different goal

"E-[Schmidts, Peer & Lee] T [Abbeel et al]




‘ Learning from Demonstrations: Teaching modalities

Motion Imitation Kinesthetic teaching Teleoperation
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[Calinon, Lee, 2017] 5



Human Motion Imitation by Humanoids

[Humanoids 2008, SYROCO2012, AT 2012, ICRA2014]



Teaching Pulp Fiction Dance

Learning from human motion
retargeting




‘ Refine a skill by kinesthetic teaching

Maotion
Capture
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[Autonomous Robots 2011, IROS 2010]



‘ Incremental Learning Steps

| ' Klnesthetlc Coachlng

[Autonomous Robots 2011, IROS 2010]



Grasping Skill Learning from Motion & Force Data

it

: : rlem] max(f"")[N] S IN] AT[ms]
Teleoperation using Cyberglove, 36 3511 - 1300 = |28
Flock of Birds, & Cybergrasp 4.0 3.21 | 5.41 [3.20 | 5.10 | 11 | 209
(Haptic Feedback) 4.8 321 | 7.12 [ 320 | 7.04 | 39 | 371
5.6 3.21 | 12,92 | 3.20 | 12.84 | 88 | 531
6.0 321 - [320 -* |106 | -*
Force control || ON | OFF | ON | OFF | ON | OFF
* unsuccessful grasping attempt
[Schmidts, Lee and Peer, IROS 2011] 10




‘ What are Challenges in Teaching by Teleoperation?

da Vinci §
SURGICAL SYETEN
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What are Challenges in Teaching by Teleoperation?
Kinesthetic Teleoperation

- High level of spatial-temporal variations.

- High cost for demonstration
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Learning Repetitive Teleoperation Tasks with DMP/GMM

Canonical System ¢ — T
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[WHC 2017] 13
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‘ Supervisor Teleoperation with Kinesthetic Coupling

1st Cycle
Artificial Agent's Original Motion | |

Shared Control Re-train the learned skill on the fly
« agent: horizontal motion by dynamic authority and kinesthetic
« human: vertical motion coupling

[AURO2019, ICRA 2020] 15
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Reinforcement Learning in Robotics

o Robots can learn how to execute a task by trial-and- error.
o Can learn complex and highly dynamic tasks
o Limited or no knowledge of robot/environment dynamics needed

= Typical problems of RL in robotic domain:
o Continuous and high dimensional state and action space
a Many rollouts in real world - Time consuming, noisy measurement
a Exploration with real robot: robot damages

[Kormushev+ 2010]

17



| Imitation Learning combined with RL

Inverse Reinforcement Learning

initial human
policy Tt : demonstrations
generate policy ) [ — DN
samples from Tt % ] S— D)
t D) () [sssrasereese ® /

Update reward using

\/Sanples & demos

update Tt w.r.t. reward

policy Tt rewardr  [Image source: Finn]
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[ICDL 2021, submitted]
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Imitation Learning combined with RL

PoWER (Policy Learning by Weighting Exploration with the Returns)
[Kober+ 2009]

« Simple and computationally efficient update rule

« Learn with minimal prior knowledge

« Policy initialized with human demonstration
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Probabilistic Inference for Learning COntrol (PILCO)

= Model-based policy search approach: Use data collected during
the rollout to learn a model of the robot in a data-efficient way

= Find optimal policy on the learned model using simulation
o Probabilistic long-term prediction to reduce model bias learning problem

SFI{n(:Ililcl)?JtteSd Analytical
_ gradient-based
Gaussian non-convex
Processes optimization
Model Policy
Learning Learning
Real
Rollout

[Deisenroth+ 2015]
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‘ Benchmark: Cart-Pole Swing-up

C: Coulom 2002

KK: Kimura & Kobayashi 1999

D: Doya 2000

WP: Wawrzynski & Pacut 2004

RT: Raiko & Tornio 2008

pilco: Deisenroth & Rasmussen 2011

trial #1 (random actions)

= No knowledge about nonlinear dynamics

= Cost function c(x) = —exp(—||x — xtarget”Z)
= Fast learning speed compared to state of the art

= Learned dynamics models are only confident in areas of the state
space previously observed

[Deisenroth+, PILCO, 2015]
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Policy Improvement with REsidual Model learning
(PI-REM)

Simulation
Approxunate Model
»| Approximate Policy Approximate Model Additive Gaussian noise
Known a priori and deterministic E.g., sensor noise

Lit1 = fa(wtaut) + fu(wtaru’t) + w

Policy Improvement | x" y Ax | Learning Residuai Dynamics

@ M [ Unknown residual dynamics ]

E.g. joint friction, contact forces

r ﬁ_ﬁnr,x'ﬂ [ f“ (s, ut) + w ~ Gaussian Process ]
¢ Real System
7 n g
- Real Policy LN x
¥ :

Real Experience Loop

[Saveriano+ 2017] [Mouret+] 22



Cart-Pole Swing-up

= Approximate model : Cart-Pole without f

= State = =[p.p.0,0]"
| Goal 339 — [anaﬂ_vo]T

Stiffness||Real rollouts|Real experience
[N/m] [#] 5] .
PI-REM 29 2 8
PILCO 25 5 20
PI-REM 50 3 12
PILCO 50 6 24
PI-REM 120 15 30
- - PILCO |
S F{--- PILCO+7®
S s
: I,
He1]
5 10 15 21 23

Rollouts [#]

[Saveriano+ 2017]
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Policy Learning Robust to Irreversible Events

= In-hand manipulation [RA-L 2018]

= Bipedal locomotion

N [ K
\1 . ;

24



Bipedal Walking
= Conventional ZMP Based Walking &7

o Feedback stabilization - tracking
template model behavior *

o Dynamically consistent walking
pattern generation

o Existing ZMP tracking error

[m]

ZMP

= Online Iterative Learning Control —— Template Model

of :
Herafive F ;;nce : COM:; Position
Loorr?ir? ,AP:; Walking Pattern ———> Feedback .| Controlled
§%qn Generation ZMP | | stabilization
Prer ontrol > T Robot
o= (NS e

[ICRA 2015] [TRO 2016] 25



‘ Simulation & Experi

Simulations
iterative learning starts

|

12

Experiments
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0

With Online Learning




Learning Dataset of Compensative ZMP Term

Sagittal Straight Walking (SSW) Lateral Straight Walking (LSW) Circle Walking

dsq = {—15,—-10,-5,0,5,10,15}em de, = 0cm

r 2 :
dis = 0cm diz, = {-7.5,—5,—2.5,0,2.5,5,7.5} em Aa = {10,20}°
T 6

T, = {0.6,0.8,1.0} s T, = {0.6,0.8,1.0} s

step time 0.8s step time 0.8s

sa.Ap. [cm]
o

-5} \

0O 02 04 06 08 1 12 14 16 0 02 04 06 08 1 12 14 16
step time 0.6s step time 0.6s

sa.A Pc [cm]

0.6

time [s] time [s]
i I T 1 e
-15 =10 -5 0 5 10 15

sagittal step length [cm]

[ICRA 2015] [TRO 2016]

27



Learning Dataset of Compensative ZMP Term

Sagittal Straight Walking (SSW) Lateral Straight Walking (LSW) Circle Walking

dsq = {—15,—-10,-5,0,5,10,15}em de, = 0cm ¢ = {05,0.75.1} m
dis = 0cm diz, = {-7.5,—5,—2.5,0,2.5,5,7.5} em Aa = {10,20}°

T, = {0.6,0.8,1.0} s T, —30.6,0.8,1.0Fs = 30.8,0.8.1.0}s

2.6 2.8 3 3.2 34 36 3.8
x [m]

[ICRA 2015] [TRO 2016] 28
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Human is not a passive entity, but active, and full of
uncertainty.

30



Experience-Driven Robotic Assistant

| __.Incrementa
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Motion
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Active Robotic Partner
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Experiment in 2D Virtual Scenario

= Robot learning, predicting and assisting during execution
= Repetitions 16 to 18 without assistance

Prediction error [m]
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[IJRR 2011, IROS2011, ICRA 2012, IROS 2012] 32



‘ Risk-sensitive Optimal Feedback Control

High uncertainty - gain | .
» Risk-averse

gain T - dominant
 Risk-seeking
gain | - passive

low uncertainty = gaint

= Assistive behavior considering both human model uncertainties
=K (£ —£)
= Probabilistic human model for desired trajectory and exerted force
= {fe, 3}, @ = {,, Bu}, withg = (z )T
= Risk senS|t|ve stochastic optimal control

J= Z (& — i) "2 2 Q8 (€h — fie) + urk Rutrs)

[ICRA2012, IROS2012]



Overview

= Learning from Demonstrations

= Reinforcement Learning in Robotics
= Human Robot Interaction Learning

= Complex Manipulation Task Learning

34



Learning complex tasks

Knowledge Representation: To find embedded
structure of a task from demonstrations

= Temporal structure

o Clustering skills and learning sequencing order
(transition probabilty) Update

transformation ©® @
A=

s @
!

= Spatial structure

Explore until \
o task parameters (e.g. coordinate system) of a skill Cunidct ‘u,ﬂ
o Spatial relation between skills

= Conditional Tasks S <>

Branch 1
o Decision making based on conditional reasoning Branch 2

= Hierarchy in symbolic abstraction level

o Task (e.g. make a coffee) — subtasks (e.g. add
water) — skills (e.g. move A to B)

[IJRR11, Int. Service Robotics17, Humanoids17, ICRA19, AuRo18, RAL20] 35



Fixed Sequencing - Conditional Sequencing

SKILL DESCRIPTION PARAMETERS

™ i Picks up a plate

[ — | Pick plate Gordon pap V
A
=—‘ Place plate _{ Gordon Places a plate i
.

Drill a hole with a defined
Drilling . Rick diameter in a defined

pattern

=
4 (gj Pick plate £ Gordon Picksupaplate

= s
NV

5 é Place plate _-i Gordon Places a plate

+ADD SKILL

Execution Phase

Branch 1

Current
execution

Branch 2

[Eiband et al, Learning Conditional Tasks by Demo. of Multi Solutions, RAL, 2019] 36



Experiment: Milk Carton Sorting
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[Eiband et al, Learning Conditional Tasks by Demo. of Multi Solutions, RAL, 2019] 37



‘ Learning Hierarchical Structured Tasks

Pouring water into glass
L ] » . .
place(water) )

NP e . |
pick(water) _
water.picked pour(water) )

= Bridging low level MP learning and high level symbolic reasoning

= integrating imitation learning, attentional supervision, and cognitive
control to learn and flexibly execute structured tasks

[Caccavale et al, Autonomous Robots 2018] [RA-L 2020]




Experiment: coffee making

Teaching

Execution |

[AURO 2018]
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‘ Task Planning and Motion Planning

Initial state
(symbolic)

A

on table bottle
on table glass
in bottle water
empty glass
empty hand

-

— —

Pick bottle
from table

iy

(:raction pick

:parameters

(bottle table)

:precondition (and

(on table bottle)
(empty hand))

:effect (and

(grasped bottle)

(not (on bottle table))

(not (empty hand))

Pour water
in glass

i

(:action pour

:parameters

(water glass)

:precondition (and

(grasped bottle)
(empty glass))

:effect (and

(in glass water)
(not (empty glass))

*

Planning Operators

!

Place bottle
on table

iy

(:action place
:parameters
(bottle table)
:precondition (and
(grasped bottle)
:effect (and
(empty hand)

(on table bottle)

Goal

in glass water
on table bottle

(not (grasped bottle))

[Agostini et al, Manipulation Planning using Object-centered Predicates and

Hierarchical Decomposition of Contextual Actions, RA-L 2020]
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Action Context

' e

Pick side bottle table

t

Same symbolic action but different motions!

T W

Pick side bottle table

[Agostini et al, Manipulation Planning using Object-centered Predicates and

Hierarchical Decomposition of Contextual Actions, RA-L 2020] 41



Experiments: Pouring Water

Initial state Goal state

Action Context Schema Segment
=

- ” s1(redC) - move_to
pick top redC bottle | % S2(redC) - reach

place top redC tablel 1 . s3(redC) - grasp
L

i’r

J.

s4(redC) - lift

4

[Agostini et al, Manipulation Planning using Object-centered Predicates and
Hierarchical Decomposition of Contextual Actions, RA-L 2020] 42




Summary: Challenges in Robot Learning

m Skill transfer from Human to Robotis a promising way
towards intuitive programming and efficient motor skill
learning.

m Sample-efficient and Safe Reinforcement Learning in Physical
World can be acheived by leveraging imitation learning,
approximate model knowledge, and learning in simulation.

n Understanding human's behaviors and their uncertainties
leads to smooth and adaptive human robot interaction..

= In order to learn complex robotic manipulation tasks, it is
essential to find the embedded structure of a task:
sequencing, conditions, hierarchical abstraction.
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What's next in robot learning?

= Robot learning requires an integrated architecture covering
symbol grounding from sensing, symbolic reasoning, motion
planning and adaptive control in physical world.

= Continual learning for Wide-Ranging Data

o A robot can collect a large amount of information from a large variety
of sensors, but rather low number of data. Simulator helps, but often
do not reflect reality in a sufficient level of details.

= Social Interaction in Robot Learning Control
o Account for the way in which data are collected.

o Iterative interaction with the users can be exploited to influence the
quality and nature of the collected data.

o Linked with active learning with multimodal social interaction aspect.
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