Efficient Motor Skill Learning in Robotics

Dongheui Lee

Department of Electrical and Computer Engineering Technical University of Munich (TUM)

Institute of Robotics and Mechatronics German Aerospace Center (DLR)

Reinforcement Learning School, April 8, 2021

Overview

- Learning from Demonstrations
- Reinforcement Learning in Robotics
- Human Robot Interaction Learning
- Complex Manipulation Task Learning

Imitation Learning

Imitation Learning in Robotics: Generation vs. Generalization

Reaching to a different goal

A different intermediate goal

[Pervez, Lee, 2017]

Knot Tying

[Abbeel et al]

Grasping a different size ball

Learning from Demonstrations: Teaching modalities

Motion Imitation

Kinesthetic teaching

Teleoperation

Exteroceptive

High burden Proprioceptive

Human Motion Imitation by Humanoids

[Humanoids 2008, SYROCO2012, AT 2012, ICRA2014]

Teaching Pulp Fiction Dance

Learning from human motion retargeting

Refine a skill by kinesthetic teaching

$$\tau = g(q) + M(q)\ddot{q}_d + C(q,\dot{q})\dot{q}_d - D\dot{\widetilde{q}} - s(\widetilde{q})$$

[Autonomous Robots 2011, IROS 2010]

Grasping Skill Learning from Motion & Force Data

Teleoperation using Cyberglove, Flock of Birds, & Cybergrasp (Haptic Feedback)

r[cm]	$\max(f^{in})[N]$		$\overline{f}^{in}[N]$		$\Delta T [{ m ms}]$	
3.6	3.21	_*	3.20	-*	28	_*
4.0	3.21	5.41	3.20	5.10	11	209
4.8	3.21	7.12	3.20	7.04	39	371
5.6	3.21	12.92	3.20	12.84	88	531
6.0	3.21	_*	3.20	_*	106	_*
Force control	ON	OFF	ON	OFF	ON	OFF

* unsuccessful grasping attempt

What are Challenges in Teaching by Teleoperation?

- High level of spatial-temporal variations.
- High cost for demonstration

Learning Repetitive Teleoperation Tasks with DMP/GMM

Canonical System
$$\dot{s} = \tau \omega$$

DMP $\dot{v} = \tau \alpha_x (\beta_x (g - x) - v) + \tau a \mathcal{F}(s)$
GMM Encoding

Supervisor Teleoperation with Kinesthetic Coupling

Shared Control

- agent: horizontal motion
- human: vertical motion

Re-train the learned skill on the fly by dynamic authority and kinesthetic coupling

Overview

- Learning from Demonstrations
- Reinforcement Learning in Robotics
- Human Robot Interaction Learning
- Complex Manipulation Task Learning

Reinforcement Learning in Robotics

- Robots can learn how to execute a task by trial-and- error.
- Can learn complex and highly dynamic tasks
- Limited or no knowledge of robot/environment dynamics needed
- Typical problems of RL in robotic domain:
 - <u>Continuous</u> and <u>high dimensional</u> state and action space
 - Many rollouts in real world \rightarrow Time consuming, noisy measurement
 - Exploration with real robot: robot damages

[Kormushev+ 2010]

Imitation Learning combined with RL

Inverse Reinforcement Learning

[ICDL 2021, submitted]

Imitation Learning combined with RL

PoWER (Policy Learning by Weighting Exploration with the Returns) [Kober+ 2009]

- Simple and computationally efficient update rule
- Learn with minimal prior knowledge
- Policy initialized with human demonstration

Probabilistic Inference for Learning COntrol (PILCO)

- Model-based policy search approach: Use data collected during the rollout to learn a model of the robot in a data-efficient way
- Find optimal policy on the learned model using simulation
 - Probabilistic long-term prediction to reduce model bias learning problem

Benchmark: Cart-Pole Swing-up

- No knowledge about nonlinear dynamics
- Cost function $c(x) = -\exp(-\|x x_{target}\|^2)$
- Fast learning speed compared to state of the art
- Learned dynamics models are only confident in areas of the state space previously observed

Policy Improvement with REsidual Model learning (PI-REM)

Cart-Pole Swing-up

- Approximate model : Cart-Pole without f_k
- State $\boldsymbol{x} = [p, \dot{p}, \theta, \dot{\theta}]^{\mathrm{T}}$
- Goal $x_g = [0, 0, \pi, 0]^{\mathrm{T}}$

	Stiffness	Real rollouts	Real experience
	[N/m]	[#]	$[\mathbf{s}]$
PI-REM	25	2	8
PILCO	25	5	20
PI-REM	50	3	12
PILCO	50	6	24
PI-REM	120	15	30
PILCO	120	23	46

Policy Learning Robust to Irreversible Events

In-hand manipulation [RA-L 2018]

Bipedal locomotion

Bipedal Walking

- Conventional ZMP Based Walking
 - Feedback stabilization → tracking template model behavior
 - Dynamically consistent walking pattern generation
 - Existing ZMP tracking error

Learning Dataset of Compensative ZMP Term

Learning Dataset of Compensative ZMP Term

Overview

- Learning from Demonstrations
- Reinforcement Learning in Robotics
- Human Robot Interaction Learning
- Complex Manipulation Task Learning

Human is not a passive entity, but active, and full of uncertainty.

Experience-Driven Robotic Assistant

Experiment in 2D Virtual Scenario

- Robot learning, predicting and assisting during execution
- Repetitions 16 to 18 without assistance

Risk-sensitive Optimal Feedback Control

- Assistive behavior considering both human model *uncertainties* $u = K(\xi - \hat{\xi})$
- Probabilistic human model for desired trajectory and exerted force $\hat{\xi} = \{\hat{\mu}_{\xi}, \hat{\Sigma}_{\xi}\}, \ \hat{u} = \{\hat{\mu}_{u}, \hat{\Sigma}_{u}\}, \ \text{with } \xi = (x \ \dot{x})^{\mathrm{T}}$
- Risk sensitive stochastic optimal control

$$J = \sum_{k=1}^{I} ((\boldsymbol{\xi}_{k} - \hat{\boldsymbol{\mu}}_{\boldsymbol{\xi}})^{\mathrm{T}} \hat{\boldsymbol{\Sigma}}_{\boldsymbol{\xi},k}^{-\frac{1}{2}} Q \hat{\boldsymbol{\Sigma}}_{\boldsymbol{\xi},k}^{-\frac{1}{2}} (\boldsymbol{\xi}_{k} - \hat{\boldsymbol{\mu}}_{\boldsymbol{\xi}}) + \boldsymbol{u}_{rk}^{\mathrm{T}} R \boldsymbol{u}_{rk})$$

Overview

- Learning from Demonstrations
- Reinforcement Learning in Robotics
- Human Robot Interaction Learning
- Complex Manipulation Task Learning

Learning complex tasks

Knowledge Representation: To find embedded structure of a task from demonstrations

- Temporal structure
 - Clustering skills and learning sequencing order (transition probabilty)
- Spatial structure
 - task parameters (e.g. coordinate system) of a skill
 - Spatial relation between skills
- Conditional Tasks
 - Decision making based on conditional reasoning
- Hierarchy in symbolic abstraction level
 - Task (e.g. make a coffee) subtasks (e.g. add water) – skills (e.g. move A to B)

action

Branch 1

Branch 2

Fixed Sequencing \rightarrow Conditional Sequencing

[Eiband et al, Learning Conditional Tasks by Demo. of Multi Solutions, RAL, 2019] 36

[Eiband et al, Learning Conditional Tasks by Demo. of Multi Solutions, RAL, 2019] 37

- Bridging low level MP learning and high level symbolic reasoning
- integrating imitation learning, attentional supervision, and cognitive control to learn and flexibly execute structured tasks

Experiment: coffee making

Teaching

[AURO 2018]

Task Planning and Motion Planning

[Agostini et al, Manipulation Planning using Object-centered Predicates and

Hierarchical Decomposition of Contextual Actions, RA-L 2020]

Action Context

[Agostini et al, Manipulation Planning using Object-centered Predicates and Hierarchical Decomposition of Contextual Actions, RA-L 2020]

Experiments: Pouring Water

[Agostini et al, Manipulation Planning using Object-centered Predicates and Hierarchical Decomposition of Contextual Actions, RA-L 2020]

Summary: Challenges in Robot Learning

- Skill transfer from Human to Robot is a promising way towards intuitive programming and efficient motor skill learning.
- Sample-efficient and Safe Reinforcement Learning in Physical World can be acheived by leveraging imitation learning, approximate model knowledge, and learning in simulation.
- Understanding human's behaviors and their uncertainties leads to smooth and adaptive human robot interaction..
- In order to learn *complex robotic manipulation* tasks, it is essential to find the embedded structure of a task: sequencing, conditions, hierarchical abstraction.

What's next in robot learning?

- Robot learning requires an integrated architecture covering symbol grounding from sensing, symbolic reasoning, motion planning and adaptive control in physical world.
- Continual learning for Wide-Ranging Data
 - A robot can collect a large amount of information from a large variety of sensors, but rather low number of data. Simulator helps, but often do not reflect reality in a sufficient level of details.
- Social Interaction in Robot Learning Control
 - Account for the way in which data are collected.
 - Iterative interaction with the users can be exploited to influence the quality and nature of the collected data.
 - Linked with <u>active learning</u> with multimodal social interaction aspect.

Thank you for your attention

Thanks to Collaborators :

- Thomas Eiband
- Yoshihiko Nakamura
- Matteo Saveriano •
- Affan Pervez
- Kai Hu
- Alejandro Agostini Alexander Schmidts
- Alberto Finzi
- **Riccardo Caccavale**

- Dana Kulic
- Jee-Hwan Ryu
- Christian Ott
- Jose Medina Angelika Peer
- Pietro Falco Sandra Hirche
 - Hiba Latifee

