Evolutionary **Reinforcement Learning**

Jean-Baptiste Mouret

Dennis G. Wilson

@digiwilson Image by Michael Ströck (mstroeck) - Created by Michael Ströck.Copied to Commons from en.wikipedia.org., CC BY-SA 3.0, <u>https://</u> commons.wikimedia.org/w/ index.php?curid=694302

Evolution on computers

- Evolution is one of the most fundamental "algorithms" of life
- It is **iterative** (generation by generation)
- It works by trial-and-error
 - random mutation = exploration
 - fitness = reward \bullet
- Evolution solves a trial-and-error learning problem! like reinforcement learning another metaphor (give other ideas / challenges) lacksquare
- a long history in computing (at least as long as learning)

Evolution can optimize policies like PPO/TRPO/etc.

Parameters of the policy

Optimize:
$$J(\theta) = \mathbb{E} \left[\sum_{t=1}^{T} r(\mathbf{x}_t) | \theta \right]$$

Reward for state \mathbf{x}_t

Black-box optimizer (no gradient)

- Multi-objective (Pareto-based) optimization
- Scale to parallel computers easily
- Holistic view (discard intermediate steps)
 - no credit assignment problem
 - no problem with large (continuous) states ... but discard a lot of useful data

https://blog.otoro.net/2017/11/12/evolving-stable-strategies/

(2013). "Flexible muscle-based locomotion for bipedal creatures". ACM Transactions on Graphics (TOG), 32(6), 206.

Evolution can optimize structures neural architecture search, morphology

A question that was studied for a very long time in evolution!

Sims, Karl. (1994) "Evolving 3D morphology and behavior by competition." *Artificial life* 1.4 (1994): 353-372.

<image>

repeat for each node

Clune J, Stanley KO, Pennock RT, Ofria C. (2011) On the performance of indirect encoding across the continuum of regularity. *IEEE Transactions on Evolutionary Computation.* 2011 Jun;15(3):346-67.

Evolution can be competitive for deep RL tasks

Frames Time Forward Passes **Backward Pass** Operations

amidar assault asterix asteroids atlantis enduro frostbite gravitar kangaroo seaquest skiing venture zaxxon

Such FP, Madhavan V, Conti E, Lehman J, Stanley KO, Clune J. Deep neuroevolution: Genetic algorithms are a competitive alternative for training deep neural networks for reinforcement learning. arXiv preprint arXiv:1712.06567. 2017.

G	GA	RS	A3C	ES	DQN	
6	1 B	1B	1 B	1B	200M	
$\sim 6 { m h} ~{ m or}~ 24$	$\sim 1 { m h} ~{ m or} ~4 { m h}$	$\sim 1 { m h} ~{ m or} ~4 { m h}$	$\sim 4 { m d}$	$\sim 1 { m h}$	\sim 7-10d	
1.5	250M	250M	250M	250M	450M	•
	0	0	250M	0	400M	es
1.5B	250M U	250M U	1B U	250M U	1.25B U	
37	263	143	264	112	978	
81	714	649	5,475	1,674	4,280	
2,25	1,850	1,197	22,140	1,440	4,359	
2,70	1,661	1,307	4,475	1,562	1,365	
129,16	76,273	26,371	911,091	1,267,410	279,987	
8	60	36	-82	95	729	
6,22	4,536	1,164	191	370	797	
76	476	431	304	805	473	
11,25	3,790	1,099	94	11,200	7,259	
85	798	503	2,355	1,390	5,861	
†-5,54	[†] -6,502	-7,679	-10,911	-15,443	-13,062	
†1,42	969	488	23	760	163	
7,86	6,180	2,538	24,622	6,380	5,363	

Outline

- **1. Evolutionary Strategies** from (μ, λ) -ES to CMA-ES
- 2. Pareto-based Multi-objective evolutionary algorithms NSGA-II
- 3. Neuroevolution from NEAT to HyperNEAT
- 4. Beyond the fitness function from novelty search to quality diversity
- Keynote: Sebastian Risi (IT University of Copenhagen) Evolving Agents that Learn More Like Animals
- **Choices:**
 - introduce the "classic algorithms" of the field (not always the most competitive)
 - present a few algorithms "in depth" (we will not be exhaustive at all)
 - In many cases, a notebook makes it possible to reproduce the examples

