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• ES (e.g., CMA-ES) are good (global) black-box optimizers, inc. for RL problems


• We can evolve the weights of deep neural networks for RL (OpenAI-ES, etc.)


• MOEA (e.g., NSGA-II) are good multi-objective (black-box) optimizers, inc. for RL problems


• We can evolve the structure of neural networks (e.g., NEAT & HyperNEAT)


• but… 

• a lot of “tuning” and “fitness shaping” for the “success stories”


• (yes, this is not highlighted in the videos / papers) 


➔ Where is open-ended, creative evolution?  

➔ What is missing? how to do better?

Where is the creativity?

The problem with artificial evolution
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• Collaborative evolution of images (online)


• inspired by Dawkins’ Biomorph


• No goal


• Encoding of images using CPPNs (see 

neuroevolution part)

The Picbreeder Experiment
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K. O. Stanley, J. Lehman (2015) - Why Greatness Cannot Be Planned,- Springer


Secretan J, Beato N, D'Ambrosio DB, Rodriguez A, Campbell A, Folsom-Kovarik JT, Stanley KO. Picbreeder: A case study in 

collaborative evolutionary exploration of design space. Evolutionary computation. 2011 Sep;19(3):373-403.

Interactive evolution



Results from Picbreeder (interactive evolution)

4source: http://www.picbreeder.org 

http://www.picbreeder.org
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Woolley, B. G., & Stanley, K. O. (2011). On the deleterious effects of a priori objectives on evolution and representation. In Proceedings of 

the 13th annual conference on Genetic and evolutionary computation (pp. 957-964). ACM.

gen 12 gen 20 gen 36 gen 49 gen 74

Skull Run 1 Run 3 Run 5 Run 7 Run 9 Run 11 Run 13 Run 15 Run 17 Run 19

23f, 57c 20f, 24c 20f, 29c 19f, 24c 22f, 28c 21f, 28c 16f, 22c 21f, 27c 23f, 29c 18f, 25c 25f, 28c

74 gen failed failed failed failed failed failed failed failed failed failed

Interactive evolution (no goal):

Objective-based evolution



• The “stepping stones” to get to the solution are NOT like the final solution


… but this is the “basic” heuristic of most search algorithms: solutions that are closer (better 

reward) to the goal should be favored!


• Interpretation: the search space “deceptive" (attractive local minima)


➔We need more exploration

Deceptive search spaces
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Mobile robot 

with policy πθ

Deceptive 

optimum (“trap”)

Goal

Fitness = distance to the goal at the end of the episode

Lehman, J., & Stanley, K. O. (2011). Abandoning objectives: Evolution through the search for novelty alone. Evolutionary computation



• Radical idea: what if we ignore the fitness function?


… and search for novel “things” 

• In RL/Evo, “things” = behavior 


➔  search for novel behaviors


Novelty search: 

➔characterize behavior (e.g., final position, not list) with a vector


➔ replace fitness by novelty


… computed by the behavioral distance to the archive & population

Novelty Search concept
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ρ(x) =
1

k

kX

j=0

db(x, µj)

Novelty of x
behavioral distance


between x and μj
Sum over the k


nearest neighbors


from archive and population

Close genotype / different behavior

Different genotype / same behavior

Lehman, J., & Stanley, K. O. (2011). Abandoning objectives: Evolution through the search for novelty alone. Evolutionary computation

Most novel



deceptive maze

Novelty search
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Behavior space = (x,y) position at the end of the evaluation period


Genotype = neural network (direct encoding, e.g. NEAT)



Another maze

Novelty Search: demo
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Source: http://eplex.cs.ucf.edu/noveltysearch/userspage/demo.html#d3



• Once all the “easy behaviors” exist in the archive (e.g. falling)


• … the agents have to be creative! (e.g., walking)

more complex example

Novelty search

10Lehman, J., & Stanley, K. O. (2011). Abandoning objectives: Evolution through the search for novelty alone. Evolutionary computation

• behavior = position of the center of mass at the end of the episode



MAP-Elites
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Mouret, J.-B., and J. Clune. "Illuminating search spaces by mapping elites." arXiv preprint arXiv:1504.04909 (2015).


Mouret J.-B. Evolving the behavior of machines: from micro to macroevolution. iScience. 2020 Oct 28:101731.

Objective: Find many good ways of solving a problem


Assumption: the fitness/reward function returns:


- a fitness/reward


- a behavioral vector (how is it solved)

fitness

features fitness function

fθ, bθ ← f(θ)

candidate

Underlying ideas:  

- closer to natural evolution, emphasize diversity


- more creative process (not pure RL/optimization)


- less exhaustive than Novelty Search



Example: planar arm
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• Search space:  (n-dimensional)


• Behavior space: (x,y) (2-dimensional)

[α1, ⋯, αn]

end-effector

x

y

see notebook
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Fitness function (notebook)

Example: planar arm
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end-effector

x

y



Archive management

Example: planar arm
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Archive initialization



Main loop

Example: planar arm
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Good solutions share common “recipes"

MAP-Elites: elite hypervolume
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V. Vassiliades & J.-B. Mouret (2018). Discovering the Elite Hypervolume by Leveraging Interspecies Correlation. Proc. of GECCO.


Adams, M. D.,et al. (2000). The genome sequence of Drosophila melanogaster. Science, 287(5461), 2185-2195.
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Good solutions share common “recipes"

MAP-Elites: elite hypervolume
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V. Vassiliades & J.-B. Mouret (2018). Discovering the Elite Hypervolume by Leveraging Interspecies Correlation. Proc. of GECCO.


Adams, M. D.,et al. (2000). The genome sequence of Drosophila melanogaster. Science, 287(5461), 2185-2195.

• What is a good variation operator?


➔  highly likely to generate an individual in the elite hypervolume

➔ Directional variation (∼ cross-over)


➔ Adapts the step size


A (Iso)

p1

p2

σ1 = 0.02
σ2 = 0.0

B (LineDD)

p1

p2

σ1 = 0.0
σ2 = 0.2

C (Iso+LineDD)

p1

p2

σ1 = 0.02
σ2 = 0.2

• if we take two points from a convex volume, any point on the segment is in the volume too
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Notebook

MAP-Elites: elite hypervolume
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V. Vassiliades & J.-B. Mouret (2018). Discovering the Elite Hypervolume by Leveraging Interspecies Correlation. Proc. of GECCO.
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• Exploration concept inspired by MAP-Elites


• behavior = state traversed


• keep fastest to reach the state in a archive/map


• Additions:


• learn policies from the state sequence (robustification)


• select cells from the map with weights + other 

heuristics


• Best results in the hard games (Montezuma revenge)

Link with GO-Explore
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Scaling up to high-dimensional behavioral spaces: 

• centroidal Voronoi tessellation to split the volume in cells  
➔Vassiliades, V., Chatzilygeroudis, K., & Mouret, J. B. (2017). Using Centroidal Voronoi Tessellations to Scale 

Up the Multi-dimensional Archive of Phenotypic Elites Algorithm. IEEE Transactions on Evolutionary 

Computation, 9.


• distance-based archive 
➔Cully, A., & Demiris, Y. (2017). Quality and diversity optimization: A unifying modular framework. IEEE 

Transactions on Evolutionary Computation, 22(2), 245-259.


• VAE-based dimensionality reduction 
➔Cully, A. (2019). Autonomous skill discovery with quality-diversity and unsupervised descriptors. In Proceedings 

of the Genetic and Evolutionary Computation Conference (pp. 81-89).


Scaling up to high-dimensional genotypes/search spaces 

• learn the hypervolume with a VAE 
➔Gaier, A., Asteroth, A., & Mouret, J. B. (2020). Discovering representations for black-box optimization. In 

Proceedings of the 2020 Genetic and Evolutionary Computation Conference (pp. 103-111).


• take inspiration from OpenAI-ES 
➔Colas, C., Madhavan, V., Huizinga, J., & Clune, J. (2020). Scaling map-elites to deep neuroevolution. In 

Proceedings of the 2020 Genetic and Evolutionary Computation Conference (pp. 67-75).


Improve data-efficiency 

• with surrogate models 
➔Gaier, A., Asteroth, A., & Mouret, J. B. (2018). Data-efficient design exploration through surrogate-assisted 

illumination. Evolutionary computation, 26(3), 381-410.


• taking inspiration from CMA-ES 
➔ Fontaine, M. C., Togelius, J., Nikolaidis, S., & Hoover, A. K. (2020). Covariance matrix adaptation for the rapid 

illumination of behavior space. In Proceedings of the 2020 genetic and evolutionary computation conference (pp. 

94-102). 20



Example: many ways of walking

21

Search space: 36 

parameters


(open-loop controller)


Behavior space: 6-D


(% of contact for each 

foot)

Cully A, Clune J, Tarapore D, Mouret JB. Robots that can adapt like animals. Nature. 2015 May;521(7553):503-7.



Example: many ways of walking
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Search space: 36 

parameters


(open-loop controller)


Behavior space: 6-D


(% of contact for each 

foot)

Cully A, Clune J, Tarapore D, Mouret JB. Robots that can adapt like animals. Nature. 2015 May;521(7553):503-7.



• 2 hidden layers of 6 neurons


• 18 outputs (joint positions

Hexapod robot — neural network

MAP-Elites vs PPO
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Open loop: input = time-modulo period Closed-loop: input = robot state (98 to 282 weights)

• Not a bad optimizer (small space)!


• Keep in mind: different problem (diversity)

Brych, S., & Cully, A. (2020). Competitiveness of MAP-Elites against Proximal Policy Optimization on locomotion tasks in deterministic 

simulations. arXiv preprint arXiv:2009.08438.



EGAD!

Example: designing a dataset for grasping

24

Morrison, D., Corke, P., & Leitner, J. (2020). Egad! an evolved grasping analysis dataset for diversity and reproducibility in robotic 

manipulation. IEEE Robotics and Automation Letters, 5(3), 4368-4375.

E0 C1 C2

B5 E1 D6

G3 B1 F5

⨯ ⨯ ⨯

⨯ ⨯ ✓

✓ ✓ ✓



Example: designing airfoils
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Gaier A, Asteroth A, Mouret JB. Data-efficient design exploration through surrogate-assisted illumination. Evolutionary computation. 2018



Trying to find the skull with MAP-Elites
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Gaier, A., Asteroth, A. & Mouret, J,-B. (2019). Does Quality Diversity Generate Better Stepping Stones than Objective-based Search? Proc. 

of GECCO
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Trying to find the skull with MAP-Elites
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Further readings about quality diversity
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KO Stanley, J Lehman. Why 

Greatness Cannot Be Planned 

(2015) - Springer
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Evolving the Behavior
of Machines: From Micro
to Macroevolution

Jean-Baptiste Mouret1,*

SUMMARY

Evolution gave rise to creatures that are arguably more sophisticated than the
greatest human-designed systems. This feat has inspired computer scientists
since the advent of computing and led to optimization tools that can evolve com-
plex neural networks for machines—an approach known as ‘‘neuroevolution.’’ Af-
ter a few successes in designing evolvable representations for high-dimensional
artifacts, the field has been recently revitalized by going beyond optimization:
to many, the wonder of evolution is less in the perfect optimization of each spe-
cies than in the creativity of such a simple iterative process, that is, in the diversity
of species. This modern view of artificial evolution is moving the field away from
microevolution, following a fitness gradient in a niche, to macroevolution, filling
many niches with highly different species. It already opened promising applica-
tions, like evolving gait repertoires, video game levels for different tastes, and
diverse designs for aerodynamic bikes.

INTRODUCTION

Evolution by natural selection is the master algorithm of life: an infinite variation/selection loop that gave

rise to the astonishing diversity of life-forms that inhabit our planet. That such an apparently simple iterative

process is at the origin of so much sophistication has fascinated computer scientists since the advent of

computers. Starting from the 1960s, several groups took inspiration from evolutionary biology to develop

‘‘artificial evolution’’ algorithms. They converged to modern ‘‘evolutionary algorithms’’ (De Jong, 2016).

Given a representation for possible solutions (a list of numbers [De Jong, 2016], a graph [Sims, 1994], a neu-

ral network [Stanley and Miikkulainen, 2002], a program [Koza, 1992], and so forth) and a fitness function

that measures their performance at the task, all variants loop over the same three steps:

(1) evaluate the fitness of each individual of the population (evaluation);

(2) rank then select the individual using their fitness value (selection);

(3) apply variation operators on the best individuals to create a new population (variation).

The process is bootstrapped by generating an initial population randomly. Depending on the variant, a

new population is created at each iteration (non-elitist algorithms) or offspring compete with their parents

to stay in the population (elitist algorithms). Two variation operators are used: mutation and crossover. Mu-

tation consists in adding random variations to a single genome; for instance, if the genome is a list of real

numbers, mutation can be implemented by addingGaussian noise to these numbers (in current algorithms,

self-adjusting perturbations are used [Hansen et al., 2003]). Crossover consists in mixing two genomes of

the population, in the hope of combining their features; in the case of a list of numbers, this can be imple-

mented by adding a linear combination of the elements of the ‘‘parents’’ (Deb and Beyer, 2001) (depending

on the representation, crossover is not always used).

From the perspective of computer science, artificial evolution is currently considered as a mathematical

optimization algorithm, that is, as an algorithm that finds the maximum of a function. Such algorithms

have countless applications in engineering, machine learning, bioinformatics, logistics, etc. (Kochenderfer

and Wheeler, 2019) because many problems can be formalized as the maximization (or minimization) of a

numerical objective. In the vast landscape of optimization algorithms, evolutionary algorithms are a good

1Inria, CNRS, Université de
Lorraine, LORIA, Nancy
54000, France

*Correspondence:
jean-baptiste.mouret@inria.fr
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Quality and Diversity Optimization: A

Unifying Modular Framework
Antoine Cully and Yiannis Demiris, Senior Member, IEEE

Abstract—The optimization of functions to find the best solu-
tion according to one or several objectives has a central role
in many engineering and research fields. Recently, a new fam-
ily of optimization algorithms, named quality-diversity (QD)
optimization, has been introduced, and contrasts with classic
algorithms. Instead of searching for a single solution, QD algo-
rithms are searching for a large collection of both diverse and
high-performing solutions. The role of this collection is to cover
the range of possible solution types as much as possible, and to
contain the best solution for each type. The contribution of this
paper is threefold. First, we present a unifying framework of
QD optimization algorithms that covers the two main algorithms
of this family (multidimensional archive of phenotypic elites and
the novelty search with local competition), and that highlights
the large variety of variants that can be investigated within this
family. Second, we propose algorithms with a new selection mech-
anism for QD algorithms that outperforms all the algorithms
tested in this paper. Lastly, we present a new collection man-
agement that overcomes the erosion issues observed when using
unstructured collections. These three contributions are supported
by extensive experimental comparisons of QD algorithms on three
different experimental scenarios.

Index Terms—Behavioral diversity, collection of solutions,
novelty search, optimization methods, quality-diversity (QD).

I. INTRODUCTION

S
EARCHING for high-quality solutions within a typically

high-dimensional search space is an important part of

engineering and research. Intensive work has been done in

recent decades to produce automated procedures to gener-

ate these solutions, which are commonly called “optimization

algorithms.” The applications of such algorithms are numer-

ous and range from modeling purposes to product design [1].

More recently, optimization algorithms have become the core

of most machine learning techniques. For example, they

are used to adjust the weights of neural networks in order

to minimize the classification error [2], [3], or to allow

robots to learn new behaviors that maximize their velocity or

accuracy [4], [5].
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Fig. 1. Objective of a QD algorithm is to generate a collection of both diverse
and high-performing solutions. This collection represents a (model free) pro-
jection of the high-dimensional search space into a lower dimensional space
defined by the solution descriptors. The quality of a collection is defined by
its coverage of the descriptor space and by the global quality of the solutions
that are kept in the collection.

Inspired by the ability of natural evolution to generate

species that are well adapted to their environment, evolutionary

computation has a long history in the domain of optimization,

particularly in stochastic optimization [6]. For example, evolu-

tionary methods have been used to optimize the morphologies

and the neural networks of physical robots [7], and to infer

the equations behind collected data [8]. These optimization

abilities are also the core of evolutionary robotics in which

evolutionary algorithms are used to generate neural networks,

robot behaviors, or objects [9], [10].

However, from a more general perspective and in contrast

with artificial evolution, natural evolution does not produce

one effective solution but rather an impressively large set of

different organisms, all well adapted to their respective envi-

ronment. Surprisingly, this divergent search aspect of natural

evolution is rarely considered in engineering and research

fields, even though the ability to provide a large and diverse

set of high-performing solutions appears to be promising for

multiple reasons.

For example, in a set of effective solutions, each provides

an alternative in the case that one solution turns out to be

less effective than expected. This can happen when the opti-

mization process takes place in simulation, and the obtained

result does not transfer well to reality (a phenomenon called

the reality gap [11]). In this case, a large collection of solu-

tions can quickly provide a working solution [4]. Maintaining

multiple solutions and using them concurrently to generate

actions or predict actions when done by other agents has also

been shown to be very successful in bioinspired motor control

and cognitive robotics experiments [12].

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/
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