Quality diversity From Novelty Search to the MAP-Elites algorithm

Jean-Baptiste Mouret – Inria

The problem with artificial evolution Where is the creativity?

- ES (e.g., <u>CMA-ES</u>) are good (global) black-box optimizers, inc. for RL problems
- We can evolve the weights of deep neural networks for RL (OpenAI-ES, etc.)
- We can evolve the structure of neural networks (e.g., <u>NEAT & HyperNEAT</u>)

• but...

- a lot of "tuning" and "fitness shaping" for the "success stories" • (yes, this is not highlighted in the videos / papers)
- → Where is open-ended, creative evolution? → What is missing? how to do better?

• MOEA (e.g., <u>NSGA-II</u>) are good multi-objective (black-box) optimizers, inc. for RL problems

C Randy Olso

The Picbreeder Experiment Interactive evolution

- Collaborative evolution of images (online)
- inspired by Dawkins' Biomorph
- No goal
- Encoding of images using CPPNs (see neuroevolution part)

K. O. Stanley, J. Lehman (2015) - Why Greatness Cannot Be Planned, - Springer Secretan J, Beato N, D'Ambrosio DB, Rodriguez A, Campbell A, Folsom-Kovarik JT, Stanley KO. Picbreeder: A case study in collaborative evolutionary exploration of design space. Evolutionary computation. 2011 Sep;19(3):373-403.

Results from Picbreeder (interactive evolution)

source: http://www.picbreeder.org

Interactive evolution (no goal):

Objective-based evolution

Woolley, B. G., & Stanley, K. O. (2011). On the deleterious effects of a priori objectives on evolution and representation. In Proceedings of

Deceptive search spaces

- The "stepping stones" to get to the solution are <u>NOT</u> like the final solution
- reward) to the goal should be favored!
- Interpretation: the search space "<u>deceptive</u>" (attractive local minima)
- \rightarrow We need more exploration

Fitness = distance to the goal at the end of the episode

Lehman, J., & Stanley, K. O. (2011). Abandoning objectives: Evolution through the search for novelty alone. Evolutionary computation

... but this is the "basic" heuristic of most search algorithms: solutions that are closer (better

Novelty Search concept

- Radical idea: what if we ignore the fitness function?
- ... and search for novel "things"
- In RL/Evo, "things" = behavior
- → search for novel <u>behaviors</u>

Novelty search:

- → characterize behavior (e.g., final position, not list) with a vector \rightarrow replace fitness by novelty
- ... computed by the behavioral distance to the archive & population

Lehman, J., & Stanley, K. O. (2011). Abandoning objectives: Evolution through the search for novelty alone. Evolutionary computation

Close genotype / different behavior

Different genotype / same behavior

Novelty search deceptive maze

Behavior space = (x,y) position at the end of the evaluation period **Genotype =** neural network (direct encoding, e.g. NEAT)

Novelty Search: demo Another maze

Fitness

Source: http://eplex.cs.ucf.edu/noveltysearch/userspage/demo.html#d3

Novelty

Novelty search more complex example

- Once all the "easy behaviors" exist in the archive (e.g. falling)
- ... the agents have to be creative! (e.g., walking)

• behavior = position of the center of mass at the end of the episode

Lehman, J., & Stanley, K. O. (2011). Abandoning objectives: Evolution through the search for novelty alone. Evolutionary computation

MAP-Elites Multi-dimensional Archive of Phenotypic Elites

Mouret, J.-B., and J. Clune. "Illuminating search spaces by mapping elites." arXiv preprint arXiv:1504.04909 (2015). Mouret J.-B. Evolving the behavior of machines: from micro to macroevolution. iScience. 2020 Oct 28:101731.

Objective: Find many good ways of solving a problem

- **Assumption:** the fitness/reward function returns:
- a fitness/reward
- a behavioral vector (how is it solved)

Underlying ideas:

- closer to natural evolution, emphasize diversity
- more creative process (not pure RL/optimization)
- less exhaustive than Novelty Search

Example: planar arm see notebook

Search space: $[\alpha_1, \dots, \alpha_n]$ (n-dimensional) **Behavior space:** (*x*,*y*) (2-dimensional)

Example: planar arm Fitness function (notebook)

def fitness(genotype): # fitness is the standard deviation of joint angles (Smoothness) # (we want to minimize it) fit = 1 - np.std(genotype)

now compute the behavior scale to [0,2pi] # g = np.interp(genotype, (0, 1), (0, 2 * math.pi))= forward_kinematics(g, [1]*len(g)) j # normalize behavior in [0,1] b = (j[-1,:]) / (2 * len(g)) + 0.5return fit, b# the fitness and the position of the last joint

Example: planar arm Archive management

```
# for simplicity, this is 2-Dimensional MAP-Elites
cols = 30
rows = 30
num_random = 100
num_dofs = 4
# we should use a dataclass, but this 3.9+
class Species:
    def __init__(self, genotype, behavior, fitness, niche=[]):
        self.genotype = genotype
        self.behavior = behavior
        self.fitness = fitness
        self.niche = niche
def add_to_archive(archive, species):
    n = species.behavior * np.array([rows, cols])
    x,y = min(round(n[0]), rows-1), min(round(n[1]), cols-1)
   if (not (x,y) in archive) or (archive[(x,y)].fitness < species.fitness):</pre>
        archive[(x,y)] = species
        species.niche = (x,y)
```

Archive initialization

```
def init_archive(num_random):# fill the archive with some random solutions
    # create an archive: a dictionnary indexed by coordinates
    archive = {}
    for i in range(0, num_random):
        g = np.random.rand(num_dofs)
        f, b = fitness(g)
            add_to_archive(archive, Species(g, b, f))
    return archive
```


Example: planar arm Main loop

```
num_iterations = 50
batch_size = 500
for j in tqdm(range(0, num_iterations)):
    display_archive(archive)
    for i in range(0, batch_size):
        # pick an existing random point in the archive
        x = random.choice(list(archive.values()))
        # mutate it (we can use more advanced variation techniques: NEAT, etc.)
        g = x.genotype + np.random.normal(0, 0.1, x.genotype.shape[0])
        # compute the fitness
        f, b = fitness(g)
        # add to archive
        add_to_archive(archive, Species(g, b, f))
```


,5

MAP-Elites: elite hypervolume Good solutions share common "recipes"

Human and fruit flies: 60% of common genes!

V. Vassiliades & J.-B. Mouret (2018). Discovering the Elite Hypervolume by Leveraging Interspecies Correlation. Proc. of GECCO. Adams, M. D., et al. (2000). The genome sequence of Drosophila melanogaster. Science, 287(5461), 2185-2195.

MAP-Elites: elite hypervolume Good solutions share common "recipes"

- What is a good variation operator? \bullet
- highly likely to generate an individual in the elite hypervolume \rightarrow

if we take two points from a convex volume, any point on the segment is in the volume too

- Directional variation (~ cross-over)
- \rightarrow Adapts the step size

V. Vassiliades & J.-B. Mouret (2018). Discovering the Elite Hypervolume by Leveraging Interspecies Correlation. Proc. of GECCO. Adams, M. D., et al. (2000). The genome sequence of Drosophila melanogaster. Science, 287(5461), 2185-2195.

$$\mathbf{x}_{i}^{(t+1)} = \mathbf{x}_{i}^{(t)} + \sigma_{1} \mathcal{N}(\mathbf{0}, \mathbf{I}) + \sigma_{2} (\mathbf{x}_{j}^{(t)} - \mathbf{x}_{i}^{(t)}) \mathcal{N}(0, 1)$$
random

perturbation for each dimension

weight a single perturbation by the difference between the parents

MAP-Elites: elite hypervolume Notebook

15

20

25

10

V. Vassiliades & J.-B. Mouret (2018). Discovering the Elite Hypervolume by Leveraging Interspecies Correlation. Proc. of GECCO.

lso+LineDD (proposed approach)

Link with GO-Explore

- Exploration concept inspired by MAP-Elites
 - behavior = state traversed
 - keep fastest to reach the state in a archive/map
- Additions:
 - learn policies from the state sequence (robustification)
 - select cells from the map with weights + other heuristics

$$W = \frac{1}{\sqrt{C_{\text{seen}} + 1}},$$

• Best results in the hard games (Montezuma revenge)

Ecoffet, A., Huizinga, J., Lehman, J., Stanley, K. O., & Clune, J. (2021). First return, then explore. *Nature*, *590*(7847), 580-586.

19

Exploration phase

Scaling up to high-dimensional behavioral spaces:

- centroidal Voronoi tessellation to split the volume in cells
 - →Vassiliades, V., Chatzilygeroudis, K., & Mouret, J. B. (2017). Using Centroidal Voronoi Tessellations to Scale Up the Multi-dimensional Archive of Phenotypic Elites Algorithm. *IEEE Transactions on Evolutionary* Computation, 9.

distance-based archive

→ Cully, A., & Demiris, Y. (2017). Quality and diversity optimization: A unifying modular framework. *IEEE* Transactions on Evolutionary Computation, 22(2), 245-259.

VAE-based dimensionality reduction

→ Cully, A. (2019). Autonomous skill discovery with quality-diversity and unsupervised descriptors. In Proceedings of the Genetic and Evolutionary Computation Conference (pp. 81-89).

Scaling up to high-dimensional genotypes/search spaces

learn the hypervolume with a VAE

→ Gaier, A., Asteroth, A., & Mouret, J. B. (2020). Discovering representations for black-box optimization. In Proceedings of the 2020 Genetic and Evolutionary Computation Conference (pp. 103-111).

take inspiration from OpenAI-ES

→ Colas, C., Madhavan, V., Huizinga, J., & Clune, J. (2020). Scaling map-elites to deep neuroevolution. In Proceedings of the 2020 Genetic and Evolutionary Computation Conference (pp. 67-75).

Improve data-efficiency

with surrogate models

→ Gaier, A., Asteroth, A., & Mouret, J. B. (2018). Data-efficient design exploration through surrogate-assisted illumination. Evolutionary computation, 26(3), 381-410.

taking inspiration from CMA-ES

→ Fontaine, M. C., Togelius, J., Nikolaidis, S., & Hoover, A. K. (2020). Covariance matrix adaptation for the rapid illumination of behavior space. In Proceedings of the 2020 genetic and evolutionary computation conference (pp. 94-102).

MAP-Elites

Example: many ways of walking

Cully A, Clune J, Tarapore D, Mouret JB. Robots that can adapt like animals. Nature. 2015 May;521(7553):503-7.

Search space: 36 parameters (open-loop controller)

Behavior space: 6-D (% of contact for each foot)

Example: many ways of walking

Cully A, Clune J, Tarapore D, Mouret JB. Robots that can adapt like animals. Nature. 2015 May;521(7553):503-7.

Search space: 36 parameters (open-loop controller)

Behavior space: 6-D (% of contact for each foot)

MAP-Elites vs PPO

Hexapod robot – neural network

- 2 hidden layers of 6 neurons
- 18 outputs (joint positions

Open loop: input = time-modulo period

Brych, S., & Cully, A. (2020). Competitiveness of MAP-Elites against Proximal Policy Optimization on locomotion tasks in deterministic simulations. *arXiv preprint arXiv:2009.08438*.

- Not a bad optimizer (small space)!
- Keep in mind: different problem (diversity)

Closed-loop: input = robot state (98 to 282 weights)

Example: designing a dataset for grasping EGAD!

Morrison, D., Corke, P., & Leitner, J. (2020). Egad! an evolved grasping analysis dataset for diversity and reproducibility in robotic manipulation. IEEE Robotics and Automation Letters, 5(3), 4368-4375.

Example: designing airfoils

Gaier A, Asteroth A, Mouret JB. Data-efficient design exploration through surrogate-assisted illumination. Evolutionary computation. 2018 25

Trying to find the skull with MAP-Elites

gen 74

Gaier, A., Asteroth, A. & Mouret, J,-B. (2019). Does Quality Diversity Generate Better Stepping Stones than Objective-based Search? Proc. of GECCO

NEAT

MAP-Elites

Trying to find the skull with MAP-Elites

Gaier, A., Asteroth, A. & Mouret, J,-B. (2019). Does Quality Diversity Generate Better Stepping Stones than Objective-based Search? Proc. of GECCO

Further readings about quality diversity

iScience

Evolving the Behavior of Machines: From Micro to Macroevolution

Jean-Baptiste Mouret^{1,7}

SUMMARY

Evolution gave rise to creatures that are arguably more sophisticated than the greatest human-designed systems. This feat has inspired computer scientists since the advent of computing and led to optimization tools that can evolve complex neural networks for machines—an approach known as "neuroevolution." After a few successes in designing evolvable representations for high-dimensional artifacts, the field has been recently revitalized by going beyond optimization to many, the wonder of evolution is less in the perfect optimization of each species than in the creativity of such a simple iterative process, that is, in the diversity of species. This modern view of artificial evolution is moving the field away from microevolution, following a fitness gradient in a niche, to macroevolution, filling many niches with highly different species. It already opened promising applica ons, like evolving gait repertoires, video game levels for different tastes, and diverse designs for aerodynamic bikes.

INTRODUCTION

Evolution by natural selection is the master algorithm of life: an infinite variation/selection loop that gave rise to the astonishing diversity of life-forms that inhabit our planet. That such an apparently simple iterative process is at the origin of so much sophistication has fascinated computer scientists since the advent of computers. Starting from the 1960s, several groups took inspiration from evolutionary biology to develop 'artificial evolution" algorithms. They converged to modern "evolutionary algorithms" (De Jong, 2016). Given a representation for possible solutions (a list of numbers [De Jong, 2016], a graph [Sims, 1994], a neu ral network [Stanley and Miikkulainen, 2002], a program [Koza, 1992], and so forth) and a fitness function that measures their performance at the task, all variants loop over the same three steps:

(1) evaluate the fitness of each individual of the population (evaluation)

(2) rank then select the individual using their fitness value (selection); (3) apply variation operators on the best individuals to create a new population (variation

The process is bootstrapped by generating an initial population randomly. Depending on the variant, a new population is created at each iteration (non-elitist algorithms) or offspring compete with their parents o stay in the population (elitist algorithms). Two variation operators are used: mutation and crossover. Mu tation consists in adding random variations to a single genome; for instance, if the genome is a list of real numbers, mutation can be implemented by adding Gaussian noise to these numbers (in current algorithms, elf-adjusting perturbations are used [Hansen et al., 2003]). Crossover consists in mixing two genomes of the population, in the hope of combining their features; in the case of a list of numbers, this can be implenented by adding a linear combination of the elements of the "parents" (Deb and Beyer, 2001) (depending on the representation, crossover is not always used).

From the perspective of computer science, artificial evolution is currently considered as a mathematical optimization algorithm, that is, as an algorithm that finds the maximum of a function. Such algorithms nave countless applications in engineering, machine learning, bioinformatics, logistics, etc. (Koo nd Wheeler, 2019) because many problems can be formalized as the maximization (or minimization) of a numerical objective. In the vast landscape of optimization algorithms, evolutionary algorithms are a good

54000, France

CellPress

Mouret, J. B. (2020). Evolving the behavior of machines: from micro to macroevolution. Iscience, 101731.

iScience 23, 101731, November 20, 2020 © 2020 The Author(s). 1 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Quality and Diversity Optimization: A Unifying Modular Framework

Antoine Cully and Yiannis Demiris, Senior Member, IEEE

Abstract-The optimization of functions to find the best solution according to one or several objectives has a central role in many engineering and research fields. Recently, a new family of optimization algorithms, named quality-diversity (QD) optimization, has been introduced, and contrasts with classic algorithms. Instead of searching for a single solution, QD algo-rithms are searching for a large collection of both diverse and high-performing solutions. The role of this collection is to cover the range of possible solution types as much as possible, and to contain the best solution for each type. The contribution of this paper is threefold. First, we present a unifying framework of QD optimization algorithms that covers the two main algorithms of this family (multidimensional archive of phenotypic elites and QD optimization algorithms that covers the two main algorithms of this family (multidimensional archive of phenotypic elites and the novelty search with local competition), and that highlights the large variety of variants that can be investigated within this family. Second, we propose algorithms with a new selection mech-anism for QD algorithms that outperforms all the algorithms tested in this paper. Lastly, we present a new collection management that overcomes the erosion issues observed when using unstructured collections. These three contributions are supporte by extensive experimental comparisons of QD algorithms on three different experimental scenarios.

Index Terms-Behavioral diversity, collection of solutions. novelty search, optimization methods, quality-diversity (QD).

I. INTRODUCTION

C EARCHING for high-quality solutions within a typically abilities are also the core of evolutionary robotics in which Shigh-dimensional search space is an important part of evolutionary algorithms are used to generate neural networks, engineering and research. Intensive work has been done in robot behaviors, or objects [9], [10]. recent decades to produce automated procedures to gener-However, from a more general perspective and in contrast ate these solutions, which are commonly called "optimization with artificial evolution, natural evolution does not produce algorithms." The applications of such algorithms are numer-one effective solution but rather an impressively large set of ous and range from modeling purposes to product design [1]. different organisms, all well adapted to their respective envi-More recently, optimization algorithms have become the core ronment. Surprisingly, this divergent search aspect of natural of most machine learning techniques. For example, they evolution is rarely considered in engineering and research are used to adjust the weights of neural networks in order fields, even though the ability to provide a large and diverse to minimize the classification error [2], [3], or to allow set of high-performing solutions appears to be promising for robots to learn new behaviors that maximize their velocity or multiple reasons. accuracy [4], [5].

Manuscript received September 5, 2016; revised December 26, 2016, March 8, 2017, and May 11, 2017; accepted May 11, 2017. Date of publication June 26, 2017; date of current version March 28, 2018. This work was supported by the EU Horizon2020 Project PAL under Grant 643783-RIA. Corresponding author: Antoine Cully.) the reality gap [11]). In this case, a large collection of solu-The authors are with the Personal Robotics Laboratory, Department of Electrical and Electronic Engineering, Imperial College London, London SW7 2BT, U.K. (e-mail: a.cully@imperial.ac.uk; multiple solutions and using them concurrently to generate y.demiris@imperial.ac.uk). actions or predict actions when done by other agents has also Color versions of one or more of the figures in this paper are available been shown to be very successful in bioinspired motor control Digital Object Identifier 10.1109/TEVC.2017.2704781 and cognitive robotics experiments [12]. This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/

Cully, A., & Demiris, Y. (2017). Quality and diversity optimization: A unifying modular framework. IEEE Transactions on Evolutionary Computation, 22(2), 245-259.

https://quality-diversity.github.io

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 22, NO. 2, APRIL 2018

and the neural networks of physical robots [7], and to infer

Why Greatness **Cannot Be Planned**

Unheberrechtlich geschütztes Material

Kenneth O. Stanley · Joel Lehman

KO Stanley, J Lehman. *Why* Greatness Cannot Be Planned (2015) - Springer

Inspired by the ability of natural evolution to generate species that are well adapted to their environment, evolutionary computation has a long history in the domain of optimization

particularly in stochastic optimization [6]. For example, evolu-

tionary methods have been used to optimize the morphologies

the equations behind collected data [8]. These optimization

For example, in a set of effective solutions, each provides

an alternative in the case that one solution turns out to be

Fig. 1. Objective of a QD algorithm is to generate a collection of both diverse

