

Sebastian Risi. Professor @ IT University of Copenhagen. Co-founder @ modl.ai

World Models (Ha and Schmidhuber, NeurIPS 2018)

1. Collect 10,000 rollouts from a random policy.

2. Train VAE (V) to encode frames into $z \in \mathcal{R}^{32}$.

Can we train such complex heterogenous architectures end-to-end through evolution?

- Relies on different training methods
- Random rollouts might not be enough in complex emvironments

Evolution for the Win

- Salimans et al. "Evolution Strategies as a Scalable Alternative to Reinforcement Learning", 2017.
- Such et al. "Deep Neuroevolution: Genetic Algorithms Are a Competitive Alternative for Training Deep Neural Networks for Reinforcement Learning", 2018.

	DON	ES	130	DC	GA	GA
-	DQN	ES	ASC	KS	UA	GA
Frames	200M	1B	1B	1B	1B	6B
Time	~7-10d	$\sim 1 { m h}$	$\sim 4d$	$\sim 1 \mathrm{h} \mathrm{ or} 4 \mathrm{h}$	\sim 1h or 4h	$\sim 6 { m h}$ or $24 { m h}$
Forward Passes	450M	250M	250M	250M	250M	1.5B
Backward Passes	400M	0	250M	0	0	0
Operations	1.25B U	250M U	1B U	250M U	250M U	1.5B U
amidar	978	112	264	143	263	377
assault	4,280	1,674	5,475	649	714	814
asterix	4,359	1,440	22,140	1,197	1,850	2,255
asteroids	1,365	1,562	4,475	1,307	1,661	2,700
atlantis	279,987	1,267,410	911,091	26,371	76,273	129,167
enduro	729	95	-82	36	60	80
frostbite	797	370	191	1,164	4,536	6,220
gravitar	473	805	304	431	476	764
kangaroo	7,259	11,200	94	1,099	3,790	11,254
seaquest	5,861	1,390	2,355	503	798	850
skiing	-13,062	-15,443	-10,911	-7,679	[†] -6,502	[†] -5,541
venture	163	760	23	488	969	†1,422
zaxxon	5,363	6,380	24,622	2,538	6,180	7,864

Can GAs scale to complex architectures with multiple different and interacting components?

Feed-forward architecture

Complex heterogenous architecture

Neuroevolution

Neuroevolution

Indirect encodings (e.g. ES-HyperNEAT)

(a) Gen 24. ANN: 30 n, (b) Gen 30 (ANN: 52 n, (c) Gen 106 (ANN: 42 n, (d) Gen 237 (ANN: 40 n, 184 c, CPPN: 2 n, 9 c, 280 c, CPPN: 3 n, 10 c, 310 c, CPPN: 3 n, 10 c, 356 c, CPPN: 5 n, 18 c, f=0.85) f=0.93) f=5.96) f=10.00)

Deep Neuroevolution

Deep Neuroevolution of Recurrent and Discrete World Models (Risi & Stanley, GECCO 2019)

VISUAL COMPONENT (VAE Encoder)

Mutations:
$$\theta' = \theta + \sigma \epsilon$$

Model	#Params	WM Training [13]	GA Training
VAE	4,348,547	SGD - 1 epoch	
MD-RNN	384,071	SGD - 20 epochs	Pop size 200
Controller	867	CMA-ES - Pop 64	Rollouts 1
-		Rollouts 16	Solved: 1,200
		Solved: 1,800 Gen.	

Method

AVG. SCORE

Methods require pre-processing such as edge detection / stacking recent frames

Experimental Setup

- CarRacing-vØ Solution: Average score > 900 on 100 randomly generated tracks
- 3 network outputs: left/right steering, acceleration and braking
- Reward of -0.1 every frame, reward of +100/N for each visited track tile
- GA with truncation selection (no crossover), population size 200
- Top 3 elites are evaluated 20 times

Four experimental setups:

- MUT-ALL
- MUT-MOD
- MUT-C
- DISCRETE-MOD

Training Results

Method	Average Score	
DQN [29]	343 ± 18	
DQN + Dropout [8]	893 ± 41	
A3C (Continious) [16]	591 ± 45	
A3C (Discrete) [19]	652 ± 10	
CEOBILLIONAIRE (Gym leaderboard)	838 ± 11	
World model [13]	906 ± 21	
World model with random MDN-RNN [43]	870 ± 120	
GA (ours)	903 ± 72	

Evolved Visual Representation

Evolved Memory Representation

Novel approach: Deep Innovation Protection (Risi & Stanley, AAAI 2021)

- Use multi-objective optimization NSGA-II with additional "age" objective
- Age is reset to zero when either the VAE or MDN-RNN is changed (lower age is better)

Optimization Details

Algorithm 1 Deep Innovation Protection

- 1: Generate random population of size N with age objectives set to 0
- 2: for generation = 1 to i do
- 3: **for** Individual in Population **do**
- 4: Objective[1] = age
- 5: Objective[2] = accumulated task reward
- 6: Increase individual's age by 1
- 7: end for
- 8: Assign ranks based on Pareto fronts
- 9: Generate set of non-dominated solutions
- 10: Add solutions, starting from first front, until number solution = N
- 11: Generate child population through binary tournament selection and mutations
- 12: Reset age to 0 for all individuals whose VC or MDN-RNN was mutated
- 13: end for

Pareto Front

Age

Generation 0

Generation 56

(b)

Evolutionary Planning in Latent Space (Olesen, Nguyen, Palm, Risi; EvoApps 2020)

The world model can be iteratively refined

Meta-Learning through Hebbian Plasticity in Random Networks (Najarro & Risi, NeurIPS 2020)

- Networks trained through RL or evolution often static during lifetime → limits their adaptation capabilities
- Start network with random weights instead and only evolve Hebbian learning rules

 $\Delta w_{ij} = \eta_w \cdot (A_w o_i o_j + B_w o_i + C_w o_j + D_w)$

RL environment

Network's dynamical weights

450K trainable parameters

Seen during training

3-layer feedforward network with [128, 64, 8] nodes \rightarrow 61,440 Hebbian coefficients

Wrapping up

- Neuroevolution is now able to scale to more complex 3D environments
- Hebbian meta-learning allows quick
 adaptation
- Hybrid approaches for the win

Acknowledgements

Thank you for your attention! Questions?

- www.sebastianrisi.com
- Email: sebastian.risi@gmail.com

- <u>Meta-Learning through Hebbian Plasticity in Random Networks</u> Elias Elias Najarro and Sebastian Risi. In: Thirty-fourth Conference on Neural Information Processing Systems (NeurIPS 2020)
- <u>Deep Innovation Protection: Confronting the Credit Assignment</u>
 <u>Problem in Training Heterogeneous Neural Architectures</u>
 Sebastian Risi and Kenneth O. Stanley
 Proceedings of the Thirty-Fith AAAI Conference on Artificial Intelligence (AAAI-2021)
- <u>Deep Neuroevolution of Recurrent and Discrete World Models</u> Sebastian Risi and Kenneth Stanley To appear in: *Proceedings of the Conference on Genetic and Evolutionary Computation* (GECCO 2019). New York, NY: ACM. (code)
- <u>Evolutionary Planning in Latent Space</u> Thor V.A.N. Olesen, Dennis T.T. Nguyen, Rasmus Berg Palm, Sebastian Risi Proceedings of the 24th International Conference on the Applications of Evolutionary Computation (EvoApplications 2021)