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Policy Gradient in practice

Outline

I Investigation of basic REINFORCE phenomena and issues

I Using:

I gym “classic control”: CartPole, Continuous MountainCar, Pendulum
I Bernoulli, Normal and squashed Gaussian policies

I Visualization of policies, critics, learning curves

I A prerequisite before going to SOTA deep RL algorithms and harder benchmarks

I Understanding phenomena is better than using black-box algorithms

I Github repo: https://github.com/osigaud/Basic-Policy-Gradient-Labs
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Policy Gradient in practice

Policies

Stochastic policies

I Bernoulli: binary choice between two actions

I Normal: continuous actions, Gaussian, no bounds

I Squashed Gaussian: Normal with bounds
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Policy Gradient in practice

Policies

The CartPole-v0 environment

I The easiest gym classic control environment

I 4 state dimensions: x, ẋ, θ, θ̇

I Binary action: push left or right. Use discrete or Bernoulli policy

I Custom continuous CartPole to study Gaussian policies (action in [−1, 1])
I 200 steps, +1 at each step → utility in [0, 200]
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Policy Gradient in practice

Using a Bernoulli policy

Results: Policy Gradient with Bernoulli policy and no baseline
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I Variance over 10 runs

I Sum, discounted sum and normalized advantage work well

I No need for additional exploration

I Stochasticity of the binary policy is enough
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Policy Gradient in practice

Using a Bernoulli policy

Initial/Final policy
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I 4 dimensions: x, ẋ, θ, θ̇

I FeatureInverter wrapper to show x and θ (see video about coding)

I black = push left, yellow = push right

I General idea: push left when right, right when left, then manage pole
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Policy Gradient in practice

Using a Bernoulli policy

Initial/Final randomness
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I Mind the scope on x-axis: initially very small (0.5 → 0.58, not centered)

I At the end of training, the policy is much less stochastic (more 0 and 1)

I Looking for optimality pushes towards less exploration
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Policy Gradient in practice

Using a Bernoulli policy

Any question?

Send mail to: Olivier.Sigaud@upmc.fr
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