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Investigation of basic REINFORCE phenomena and issues
Using:

v

» gym “classic control”: CartPole, Continuous MountainCar, Pendulum
» Bernoulli, Normal and squashed Gaussian policies

Visualization of policies, critics, learning curves
A prerequisite before going to SOTA deep RL algorithms and harder benchmarks
Understanding phenomena is better than using black-box algorithms

Github repo: https://github.com/osigaud/Basic-Policy-Gradient-Labs



https://github.com/osigaud/Basic-Policy-Gradient-Labs
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Policies

Stochastic policies

Bernoulli Normal Squashed Gaussian
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» Bernoulli: binary choice between two actions

» Normal: continuous actions, Gaussian, no bounds

» Squashed Gaussian: Normal with bounds
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Policies

The CartPole-v0 environment

The easiest gym classic control environment
4 state dimensions: x,, 0,0

Binary action: push left or right. Use discrete or Bernoulli policy

Custom continuous CartPole to study Gaussian policies (action in [—1,1
200 steps, +1 at each step — utility in [0, 200]
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Using a Bernoulli policy

Results: Policy Gradient with Bernoulli policy and no baseline
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» Variance over 10 runs

» Sum, discounted sum and normalized advantage work well
» No need for additional exploration

» Stochasticity of the binary policy is enough
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Using a Bernoulli policy

Initial /Final policy
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» 4 dimensions: x,a’:,@,é
> FeaturelInverter wrapper to show z and 6 (see video about coding)

» black = push left, yellow = push right

» General idea: push left when right, right when left, then manage pole
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LUsing a Bernoulli policy
:
Initial/Final randomness

> Mind the scope on x-axis: initially very small (0.5 — 0.58, not centered)

> At the end of training, the policy is much less stochastic (more 0 and 1)
» Looking for optimality pushes towards less exploration
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Using a Bernoulli policy

Any question?

Send mail to: Olivier.Sigaud@upmc.fr
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