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Don't become an alchemist :)
Olivier Sigaud

Sorbonne Université
http://people.isir.upme.fr/sigaud
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Issues

Normalization issue

(1) _ =
Normalize each local return with T;T(T)T —~ N(0,1)
In CartPole and CartPoleContinuous, » = 1 for all steps before failure
Thus, at all steps, r —7 =0 and std =0

Cannot be applied
By discounting the reward, we avoid this

In the sum case, longer trajectories are more rewarded

Globally, poorly informative gradient
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Issues

Deterministic evaluation

Deterministic vs stochastic evaluation
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Episodes
» Separating training and evaluation epochs is a good practice

» Evaluating a deterministic version of the policy leads to less noisy results

» Less episodes because only evaluation episodes are displayed
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Issues

Initialization bias in Bernoulli policies

Two Initial Bernoulli policies
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» To make deterministic policy, choice if threshold > 0.5 or < 0.5
» With the default initialization

» |nitial decision thresholds are often all above 0.5, or all below 0.5

» Thus initial deterministic policies always take the same action!
o (w1 =
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Using a Normal policy

Policy Gradient with Normal Policies
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» Coded with adaptive variance
» Does not reach optimal performance
» What's happenning???
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|—Using a Normal policy
:
The NormalPolicy python class

class NormalPolicy(GenericNet):

def __init__(self, 11, 12, 13, 14, learning_rate):
super (NormalPolicy, v_self) _nit_()

[...]

def forward(gamd, stoe®: ™= =

¢ = torch. from_nunpy(state). float()
' state = self,relu(self.fei(state))

~

state = self,relu(self.fe2(state))

‘ n = self tanh(self fc_nu(state))
~

std =2 # self.softplus(self.fc_std(state))
refgg M, std

’/
™ e = -

» Due to init, the variance is very small
» All trajectories keep the same

» Bug fix: fixed variance. Tuning std helps
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6/9



R

Policy Gradient in practice

Using a Normal policy

Policy Gradient with Normal Policies: bug fixed
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» One might rather use a squashed Gaussian (see SAC video)
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Using a Normal policy

Normal Policy

» Bernoulli (left) and Normal (right) policies

» Actions in a smaller range, and more continuous
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Using a Normal policy

Any question?

Send mail to: Olivier.Sigaud@upmc.fr
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