Policy Gradient in practice Don't become an alchemist :)

Olivier Sigaud

Sorbonne Université http://people.isir.upmc.fr/sigaud

Normalization issue

- ▶ Normalize each local return with $\frac{r_t^{(i)} \bar{r}}{std(r)} \to \sim \mathcal{N}(0, 1)$
- ▶ In CartPole and CartPoleContinuous, r = 1 for all steps before failure
- ▶ Thus, at all steps, $r \bar{r} = 0$ and std = 0
- Cannot be applied
- By discounting the reward, we avoid this
- ▶ In the sum case, longer trajectories are more rewarded
- Globally, poorly informative gradient

Deterministic vs stochastic evaluation

Less episodes because only evaluation episodes are displayed

3/9

DES SYSTÈMES INTELLIDENTS ET DE ROBOTI

イロン スピン イヨン イヨン

Two Initial Bernoulli policies

- \blacktriangleright To make deterministic policy, choice if threshold $> 0.5~{\rm or} < 0.5$
- With the default initialization
- Initial decision thresholds are often all above 0.5, or all below 0.5
- Thus initial deterministic policies always take the same action!

イロン スピン イヨン イヨン

Policy Gradient with Normal Policies

- Coded with adaptive variance
- Does not reach optimal performance
- What's happenning???

The NormalPolicy python class

- Due to init, the variance is very small
- All trajectories keep the same
- Bug fix: fixed variance. Tuning std helps

Policy Gradient with Normal Policies: bug fixed

Normal Policy

- Bernoulli (left) and Normal (right) policies
- Actions in a smaller range, and more continuous

イロト イヨト イヨト イヨト

Policy Gradient in practice

Any question?

Send mail to: Olivier.Sigaud@upmc.fr

