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Policy Gradient in practice

Issues

Normalization issue

I Normalize each local return with
r
(i)
t −r̄

std(r)
→∼ N (0, 1)

I In CartPole and CartPoleContinuous, r = 1 for all steps before failure

I Thus, at all steps, r − r̄ = 0 and std = 0

I Cannot be applied

I By discounting the reward, we avoid this

I In the sum case, longer trajectories are more rewarded

I Globally, poorly informative gradient
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Policy Gradient in practice

Issues

Deterministic evaluation

Deterministic vs stochastic evaluation
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I Separating training and evaluation epochs is a good practice

I Evaluating a deterministic version of the policy leads to less noisy results

I Less episodes because only evaluation episodes are displayed
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Policy Gradient in practice

Issues

Initialization bias in Bernoulli policies

Two Initial Bernoulli policies
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I To make deterministic policy, choice if threshold > 0.5 or < 0.5

I With the default initialization

I Initial decision thresholds are often all above 0.5, or all below 0.5

I Thus initial deterministic policies always take the same action!
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Policy Gradient in practice

Using a Normal policy

Policy Gradient with Normal Policies
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I Coded with adaptive variance

I Does not reach optimal performance

I What’s happenning???
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Policy Gradient in practice

Using a Normal policy

The NormalPolicy python class

I Due to init, the variance is very small

I All trajectories keep the same

I Bug fix: fixed variance. Tuning std helps
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Policy Gradient in practice

Using a Normal policy

Policy Gradient with Normal Policies: bug fixed
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I One might rather use a squashed Gaussian (see sac video)
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Policy Gradient in practice

Using a Normal policy

Normal Policy
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I Bernoulli (left) and Normal (right) policies

I Actions in a smaller range, and more continuous
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Policy Gradient in practice

Using a Normal policy

Any question?

Send mail to: Olivier.Sigaud@upmc.fr
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