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Policy Gradient in practice

Using a critic as baseline

Initial/Final critic
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I Obtained from Bernoulli policy training and Monte Carlo evaluation method

I Batches obtained from policies along training

I General idea: it is better to be with null angle and position
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Policy Gradient in practice

Using a critic as baseline

MC estimates versus TD estimates of a critic

MC vs TD estimation

I Obtained from Monte Carlo batches from a top policy with low variance
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I The targets keep the same:
this is a regression problem

I No need to recompute the
target from the batch when
the critic changes

I In the beginning, critic values are all 0

I Thus the loss are all low

I The TD error ↑, then should ↓ to 0

I Need to recompute the target at each iteration

I (or target critic)
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Policy Gradient in practice

Issues

Losses of the critics
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I Bernoulli (left) and Normal (right) policies

I The critic loss does not go to 0
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Policy Gradient in practice

Issues

Losses of Bernoulli, longer run
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I In Bernoulli policies, randomness does not go down to 0

I In Normal policies, fixed Gaussian variance

I Squashed Gaussian policy: tunable variance, but same story

I If the loss goes to 0, the policy degenerates
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Policy Gradient in practice

Issues

Monte Carlo critic from optimal policy
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I Trained MC critic from random policy versus from top policy

I From a top policy, it does not work anymore

I Data along the same optimal trajectory: not enough exploration
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Policy Gradient in practice

Issues

Policy Gradient with critic baseline
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I Learning the baseline (here, a Q-function) works well

I Until the lack of exploration results in critic degeneracy

I Sometimes, degeneracy is much more abrupt
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Policy Gradient in practice

Issues

Any question?

Send mail to: Olivier.Sigaud@upmc.fr
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