From Policy Gradient to Actor-Critic methods
Policy Gradient and Reward Weighted Regression

Olivier Sigaud

Sorbonne Université
http://people.isir.upmc.fr/sigaud
Reminder: the most basic PG algorithm

Sample a set of trajectories from π_θ
Compute:

\[
Loss(\theta) = -\frac{1}{m} \sum_{i=1}^{m} \sum_{t=1}^{H} \log \pi_\theta (a^{(i)}_t | s^{(i)}_t) R(\tau^{(i)})
\]

Minimize the loss
Iterate: sample again
Behavioral cloning

- Assume we have a set of expert trajectories,
- Data is a list of pairs \((s_t^{(i)}, a_t^{(i)})\), \(t\) is time, \(H\) is horizon, \(i\) is the trajectory index
- If the trajectories are optimal, a good option is behavioral cloning
- Use regression to find a policy \(\pi_\theta\) behaving as close as possible to data
- Use a validation set to avoid overfitting.
- If the policy \(\pi_\theta\) is deterministic, this amounts to minimizing the loss function:

\[
Loss(\theta) = -\frac{1}{m} \sum_{i=1}^{m} \sum_{t=1}^{H} (a_t^{(i)} - \pi_\theta(s_t^{(i)}))^2
\]

- If the policy \(\pi_\theta\) is stochastic, a standard approach (among many others) consists in minimizing the log likelihood loss function:

\[
Loss(\theta) = -\frac{1}{m} \sum_{i=1}^{m} \sum_{t=1}^{H} \log \pi_\theta(a_t^{(i)} | s_t^{(i)})
\]
Reward Weighted Regression

▶ Now, if the expert trajectories are not optimal
▶ Let $R(\tau)$ be the return of trajectory τ
▶ Still use regression, but weight each sample depending on the return of the corresponding trajectory.
▶ That is, imitate “more strongly” what is good in the batch than what is bad.
▶ Still use a validation set to avoid overfitting.
▶ If the policy π_θ is deterministic, this amounts to minimizing the loss function:

$$Loss(\theta) = -\frac{1}{m} \sum_{i=1}^{m} \sum_{t=1}^{H} (a_t^{(i)} - \pi_\theta(s_t^{(i)}))^2 R(\tau^{(i)})$$

▶ If the policy π_θ is stochastic, we minimize the function:

$$Loss(\theta) = -\frac{1}{m} \sum_{i=1}^{m} \sum_{t=1}^{H} \log \pi_\theta(a_t^{(i)}|s_t^{(i)}) R(\tau^{(i)})$$ \hspace{1cm} (2)

▶ Then we can iterate: generate new data from the new policy, and so on
PG = RWR !

- Equation (2) is the same as (1)!
- But wait, the basic PG algorithm is on-policy, and RWR uses expert data in the first step! What’s happening?
- My guess: An on-policy algorithm will work under an off-policy regime if the behavioral samples are not worse than the current policy
- There also exists AWR, close to REINFORCE with $V(s)$ baseline, thus weight $= \hat{A}_\pi^{\phi_j}(s_t^{(i)}, a_t^{(i)})$
- See my youtube video
 https://www.youtube.com/watch?v=ivONO2X-MHk
- And this blogpost for a wider perspective:
 Data-driven Deep Reinforcement Learning
 https://bair.berkeley.edu/blog/2019/12/05/bear/

Any question?

Send mail to: Olivier.Sigaud@upmc.fr
Xue Bin Peng, Aviral Kumar, Grace Zhang, and Sergey Levine.