From Policy Gradient to Actor-Critic methods
PG with baseline versus Actor-Critic

Olivier Sigaud

Sorbonne Université
http://people.isir.upmc.fr/sigaud
From Policy Gradient to Actor-Critic methods

Being truly actor-critic

- PG methods with V, Q or A baselines contain a policy and a critic
- Are they actor-critic?
- Only if the critic is learned from bootstrap!
“Although the REINFORCE-with-baseline method learns both a policy and a state-value function, we do not consider it to be an actor–critic method because its state-value function is used only as a baseline, not as a critic.”

“That is, it is not used for bootstrapping (updating the value estimate for a state from the estimated values of subsequent states), but only as a baseline for the state whose estimate is being updated.”

“This is a useful distinction, for only through bootstrapping do we introduce bias and an asymptotic dependence on the quality of the function approximation.”

Monte Carlo versus Bootstrap approaches

- Three options:
 - MC direct gradient: Compute the true $Q^{\pi\theta}$ over each trajectory
 - MC model: Compute a model $\hat{Q}^{\pi\theta}$ over rollouts using MC regression, throw it away after each policy gradient step
 - Bootstrap: Update a model $\hat{Q}^{\pi\theta}$ over samples using TD methods, keep it over policy gradient steps
 - Sutton&Barto: Only the latter ensures “asymptotic convergence” (when stable)
Single step updates

- With a model \(\psi_t(s^{(i)}_t, a^{(i)}_t) \), we can compute \(\nabla_\theta J(\theta) \) over a single state using:
 \[
 \nabla_\theta \log \pi_\theta(a^{(i)}_t | s^{(i)}_t) \psi_t(s^{(i)}_t, a^{(i)}_t)
 \]

- With \(\psi_t = \hat{Q}^\pi_\phi (s^{(i)}_t, a^{(i)}_t) \) or \(\psi_t = \hat{A}^\pi_\phi (s^{(i)}_t, a^{(i)}_t) \)

- This is true whatever the way to obtain \(\hat{Q}^\pi_\phi \) or \(\hat{A}^\pi_\phi \)

- Crucially, samples used to update \(\hat{Q}^\pi_\phi \) or \(\hat{A}^\pi_\phi \) do not need to be the same as samples used to compute \(\nabla_\theta J(\theta) \)
Using a replay buffer

- Agent samples are not independent and identically distributed (i.i.d.)
- Shuffling a replay buffer (RB) makes them more i.i.d.
- It improves a lot the sample efficiency
- Recent data in the RB come from policies close to the current one

If \hat{Q}_{ϕ} is obtained from bootstrap, everything can be done from a single sample

- Samples to compute $\nabla_{\theta} J(\theta)$ still need to come from π_{θ}
- Samples to update the critic do not need this anymore
- This defines the shift from policy gradient to actor-critic
- This is the crucial step to become off-policy
- However, using bootstrap comes with a bias
- Next lesson: bias-variance trade-off
Any question?

Send mail to: Olivier.Sigaud@upmc.fr
Long-Jin Lin.
Self-Improving Reactive Agents based on Reinforcement Learning, Planning and Teaching.

Richard S. Sutton and Andrew G. Barto.
Reinforcement Learning: An Introduction (Second edition).