From Policy Gradient to Actor-Critic methods
On-policy versus Off-policy

Olivier Sigaud

Sorbonne Université
http://people.isir.upmc.fr/sigaud
Basic concepts

To understand the distinction, one must consider three objects:

- The behavior policy \(\beta(s) \) used to generate samples.
- The critic, which is generally \(V(s) \) or \(Q(s, a) \)
- The target policy \(\pi(s) \) used to control the system in exploitation mode.

Off-policy learning: definition

“Off-policy learning” refers to learning about one way of behaving, called the target policy, from data generated by another way of selecting actions, called the behavior policy.

Two notions:

- Off-policy policy evaluation (not covered)
- Off-policy control:
 - Whatever the behavior policy (as few assumptions as possible)
 - The target policy should be an approximation to the optimal policy
 - Ex: stochastic behavior policy, deterministic target policy

Why prefering off-policy to on-policy control?

- Reusing old data, e.g. from a replay buffer (sample efficiency)
- More freedom for exploration
- Learning from human data (imitation)
- Transfer between policies in a multitask context
Approach: two steps

- Open-loop study
 - Use uniform sampling as “behavior policy” (few assumptions)
 - No exploration issue, no bias towards good samples
 - NB: in uniform sampling, samples do not correspond to an agent trajectory
 - Study critic learning from these samples

- Then close the loop:
 - Use the target policy + some exploration as behavior policy
 - If the target policy gets good, bias more towards good samples
Learning a critic from samples

- General format of samples S: $(s_t, a_t, r_t, s_{t+1}, a')$
- Makes it possible to apply a general update rule:
 $$Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha [r_t + \gamma Q(s_{t+1}, a') - Q(s_t, a_t)]$$
- There are three possible update rules:
 1. $a' = \text{argmax}_a Q(s_{t+1}, a)$ (corresponds to Q-LEARNING)
 2. $a' = \beta(s_{t+1})$ (corresponds to SARSA)
 3. $a' = \pi(s_{t+1})$ (corresponds e.g. to DDPG, an ACTOR-CRITIC algorithm)
Results

- Rule 1 learns an optimal critic (thus Q-LEARNING is truly off-policy)
- Rule 2 fails (thus SARSA is not off-policy)
- Rule 3 fails too (thus an algorithm like DDPG is not truly off-policy!)
- NB: different ACTOR-CRITIC implementations behave differently
- E.g. if the critic estimates $V(s)$, then equivalent to Rule 1
Closing the loop

- If $\beta(s) = \pi^*(s)$, then Rules 2 and 3 are equivalent,
- Furthermore, $Q(s, a)$ will converge to $Q^*(s, a)$, and Rule 1 will be equivalent too.
- Quite obviously, Q-LEARNING still works
- SARSA and ACTOR-CRITIC work too: $\beta(s)$ becomes “Greedy in the Limit of Infinite Exploration” (GLIE)
From Policy Gradient to Actor-Critic methods

— Mechanisms

Policy search case

\[\nabla_\theta J(\theta) = \mathbb{E}_{s_t, a_t \sim \pi_\theta(\cdot)} [\nabla_\theta \log \pi_\theta(a_t^{(i)} | s_t^{(i)})] \psi_t(a_t^{(i)} | s_t^{(i)}) \]

- **Q-LEARNING** is the only truly off-policy algorithm that I know about
- With continuous action, you cannot compute \(\max_a Q_\phi(s_{t+1}, a) \)
- An algorithm is more or less off-policy depending on assumptions on \(\beta(s) \)
- With a replay buffer, \(\beta(s) \) is generally close enough to \(\pi(s) \)
- DDPG, TD3, SAC are said off-policy because they use a replay buffer
Limits to being off-policy

\[\nabla_{\theta} J(\theta) = \mathbb{E}_{s_t, a_t \sim \pi_{\theta}(\cdot)} \left[\nabla_{\theta} \log \pi_{\theta}(a_t^{(i)} | s_t^{(i)}) \psi_t(a_t^{(i)} | s_t^{(i)}) \right] \]

Still need to sample according to \(\pi_{\theta} \)

Bootstrap updates from one-step samples

Replay buffer

- DDPG, TD3, SAC use the same off-policy samples to update both the critic and the actor
- OK for the critic, not for the actor
- Does it make sense to sample differently for actor and critic?
- Yes, if several actors share one critic
- Towards offline reinforcement learning

Any question?

Send mail to: Olivier.Sigaud@upmc.fr
Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu.
Offline reinforcement learning: Tutorial, review, and perspectives on open problems.

Hamid Reza Maei, Csaba Szepesvári, Shalabh Bhatnagar, and Richard S. Sutton.
Toward off-policy learning control with function approximation.

Satinder P. Singh, Tommi Jaakkola, Michael L. Littman, and Csaba Szepesvári.
Convergence results for single-step on-policy reinforcement-learning algorithms.