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Overview

● Warm up
○ From value iteration to DQN, and back to approximate DP

● Regularized Approximate Dynamic Programming
○ A general view of regularization in RL 

● Case studies
○ Entropy regularization
○ KL regularization

● The many ways to do regularization
○ A quick overview

● The issue with (KL) regularization
○ For deep RL

● A remedy
○ Munchausen RL
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Warm up
From dynamic programming to (deep) RL (and back)



Reinforcement Learning

● Closed-loop control
○ the agent observes the state
○ it applies an action
○ the system’s state changes
○ the agent is rewarded for the transition

● Agent’s goal
○ maximize cumulative rewards

● Control learnt from data
● Formalized with Markov Decision Processes

System

action

state, reward



Markov Decision Process

● MDP:
○

● Policy:
○

● Value function:
○  
○

● Optimal policy
○
○   

● Computing the optimal policy:
○ Dynamic Programing

System

action

state, reward



q-function and Bellman operator

● Q-functions will be convenient:
● Can be simplified:

●      is the (unique) fixed point of the Bellman operator 



Value iteration

● Greediness

● Value iteration

● VI (more classic form)

?



● In reinforcement learning:
○ Model unknown (transition kernel, reward)
○ Learning from data
○ State/action spaces too large for representing exactly q-functions.

Value iteration - toward approximation

We can only sample

This can only be
approximately represented
(eg, neural net)

Not possible to consider
all state-action pairs



Towards DQN

● Approximate          with a neural net      , let       be      , a copy of the previous network
● Assume we have access to a dataset of transitions,
● Approximate the q-function by solving a regression problem: 

Optimize over
available samples

Sample instead of expectation

Approximated with a
neural network



Towards DQN

● How to fill the dataset?
○ With interaction data

● How to interact with the system?
○ Exploration/exploitation dilemma
○ Simple solution: epsilon-greedy policy, play

●  When to update the target network?
○ Not too often, or will be unstable
○ Often enough, or will be too slow



DQN

[1] V. Mnih et al. Human-level control through deep reinforcement learning. Nature, 2015.



Theoretical analysis

● DQN is a form of approximate value iteration

● Propagation of errors (eg, [1])

Distance to
optimality Horizon factor Rate of convergence

(without error)
Error term

[1] B. Scherrer et al. Approximate Modified Policy Iteration. JMLR 2015
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Regularized (Approximate)
Dynamic Programming



Why regularization

● What is regularization in RL?
○ See the many next slides!

● Why regularization in RL?
○ Arises when framing RL as probabilistic inference (eg, [1])
○ Favoring exploration (high policy’s entropy, eg [2])
○ Smoothing the optimization landscape [3]
○ Trust region for the policy update [4]
○ Theoretical guarantees [5]
○ Works well empirically!

● Here, focus on the viewpoint of regularized ADP [6]
○ Unifying abstraction, allows for theoretical analysis, recovers many/all agents

[1] S. Levine. RL and control as probabilistic inference: tutorial and review. arXiv, 2018
[2] T. Haarnoja et al. Soft Actor-Critic: off-policy maxent deep RL with a stochastic actor. ICML 2018
[3] Z. Ahmed et al. Understanding the impact of entropy on policy optimization. ICML 2019
[4] J. Schulman et al. Trust region policy optimization. ICML 2015
[5] N. Vieillard et al. Leverage the average: an analysis of KL regularization in RL. NeurIPS, 2020
[6] M. Geist et al. A theory of regularized MDPs. ICML 2019
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Some notations
Now stochastic policies,

AVI

Bellman operator:

greedy policy:

Entropy and KL divergence:



Regularizing the greedy step



No regularization

Classic greedy policy

Ok if there is no error in the q-values
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Regularization with entropy

Penalized for going too far from the 
uniform policy
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Regularization with Kullback-Leibler

Penalized for going too far from the 
previous policy
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previous policy



Regularization with both

Penalized for going too far from the 
previous policy and for going too far 
from the uniform policy



Regularization with both

Penalized for going too far from the 
previous policy and for going too far 
from the uniform policy



Regularization with both

Penalized for going too far from the 
previous policy and for going too far 
from the uniform policy



Regularization with q-values

Greedy (so policy in a corner of the simplex), but w.r.t. the sum of all q-values

   



Regularization with q-values

Greedy (so policy in a corner of the simplex), but w.r.t. the sum of all q-values

Rational: assume                   with the errors being i.i.d., classical 
greediness would not converge, while this regularized greediness would 
provide asymptotically the optimal policy      



Regularizing the evaluation step?



Naive approach
● For a general greedy step

● Just consider the usual evaluation step

● This is the usual approach in the litterature                                                
(called type 2 in my own nomenclature)



A principled approach
● For a general greedy step

● Regularize the same way the evaluation step

● This is much less usual in the litterature                                                       
(called type 1 in my own nomenclature)



Summary
● Mirror-Descent VI, type 1 [1]

● Mirror-Descent VI, type 2 [1]

[1] M. Geist et al. A theory of regularized MDPs. ICML 2019.
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Case study
Entropy regularization



Objective

● Regularized DP Scheme

● What practical algorithms can be derived from this?
○ Same approach as AVI->DQN
○ Will consider also continuous actions

● What theoretical guarantees?



A look at the (regularized) greedy step

● Greedy step, 
● The negative entropy                is convex, unique solution
● This is indeed a Legendre-Fenchel transform (convex conjugate)

● With the negative entropy, the convex conjugate is the log-sum-exp and the 
maximizer is the softmax



Soft-DQN

● Same approach as for DQN

● We get DQN back as 



Soft-DQN (bis)

● By Legendre-Fenchel, we have

● Same approach as DQN (equivalent to before)

 

● Again, we retrieve DQN as 



With continuous actions?

● The policy can no longer be computed (softmax over continuous actions)
○ Learn it! (add an actor --the policy-- to the critic --the q-function--)

● First solution, direct approach 

● (alternative to importance sampling, reparameterization trick)

● Second solution, indirect approach (equivalent). We know analytically

● Evaluation: 



Theoretical analysis (exact greedy step)

● Regularized DP scheme

● Propagation of errors [1]

● No advantage regarding propagation of errors, but other arguments:
○ Exploration (eg [2]), optimization landscape [3], smoothness (eg [4])...

Same bound as DQNBiased solution

[1] M. Geist et al. A theory of regularized MDPs. ICML 2019
[2] T. Haarnoja et al. Soft Actor-Critic: off-policy maxent deep RL with a stochastic actor. ICML 2018
[3] Z. Ahmed et al. Understanding the impact of entropy on policy optimization. ICML 2019
[4] L. Shani et al. Adaptive Trust Region Policy Optimization: Global Convergence and Faster Rates for Regularized MDPs. AAAI 2020



Proprietary + Confidential

Case study
KL regularization



Objective

● Regularized DP Scheme

● What practical algorithms can be derived from this?
○ Same approach as AVI->DQN
○ Will consider also continuous actions

● What theoretical guarantees?



A look at the (regularized) greedy step

 

● The greedy step is a Legendre-Fenchel transform:
● With a direct induction argument:

● Equivalent AVI scheme, Dual Averaging viewpoint



Practical algorithm(s)

● Now, even with discrete actions, the policy should be learnt
● Direct/indirect approach provide the same loss, works for continuous actions

● One could also approximate the mean of q-values by a moving average

● Evaluation step



Theoretical analysis (exact greedy step) 

KL-regularized AVI                                                          vs AVI

P 50
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The many (?) ways to do regularization

A quick overview



Encompassed algorithms

Only entropy Only KL Both

Reg. evaluation Soft Q-learning [1,2],
SAC [3], Mellowmax [4]

DPP [6],
SQL [7]

CVI [12], AL [13,14],
Munchausen-RL [15]

Unreg. evaluation softmax DQN [5] TRPO [8], MPO [9],
Politex [10], MoVI [11]

Softened LSPI [16],
MoDQN [11]

[1] Fox, R., Pakman, A., and Tishby, N. Taming the noise in reinforcement learning via soft updates. In UAI, 2016.
[2] Haarnoja, T., Tang, H., Abbeel, P., and Levine, S. Reinforcement learning with deep energy-based policies. In ICML, 2017.
[3] Haarnoja, T., Zhou, A., Abbeel, P., and Levine, S. Soft actor-critic. In ICML, 2018.
[4] Asadi, K. and Littman, M. L. An alternative softmax operator for reinforcement learning. In ICML, 2017.
[5] Song, Z., Parr, R., and Carin, L. Revisiting the softmax bellman operator: New benefits and new perspective. In ICML, 2019.
[6] Azar, M. G., Gómez, V., and Kappen, H. J. Dynamic policy programming. JMLR, 2012.
[7] Azar, M. G., Munos, R., Ghavamzadeh, M., and Kappen, H. J. Speedy q-learning. In NeurIPS, 2011.
[8] Schulman, J., Levine, S., Abbeel, P., Jordan, M., and Moritz, P. Trust region policy optimization. In ICML, 2015.
[9] Abdolmaleki, A., Springenberg, J. T., Tassa, Y., Munos, R., Heess, N., and Riedmiller, M. Maximum a posteriori policy optimisation. In ICLR, 2018.
[10] Abbasi-Yadkori, Y., Bartlett, P., Bhatia, K., Lazic, N., Szepesvári, C., and Weisz, G. Politex: Regret bounds for policy iteration using expert prediction. In ICML, 2019.
[11] Vieillard, N., Scherrer, B., Pietquin, O., and Geist, M. Momentum in reinforcement learning. In AISTATS, 2020.
[12] Kozuno, T., Uchibe, E., and Doya, K. Theoretical analysis of efficiency and robustness of softmax and gap-increasing operators in RL. In AISTATS, 2019.
[13]  Baird III, L. C. Reinforcement Learning Through Gradient Descent. PhD thesis, US Air Force Academy, US, 1999.
[14]  Bellemare, M. G., Ostrovski, G., Guez, A., Thomas, P. S., and Munos, R. Increasing the action gap: New operators for reinforcement learning. In AAAI, 2016.
[15] Vieillard, N., Pietquin, O., and Geist, M. Munchausen Reinforcement Learning. In NeurIPS, 2020.
[16] Pérolat, J., Piot, B., Geist, M., Scherrer, B., and Pietquin, O. Softened approximate policy iteration for markov games. In ICML, 2016.

With either the (equivalent) Mirror Descent or Dual Averaging viewpoints



Entropy, type 2
● DP scheme

● Equivalent to applying the softmax Bellman operator (softmax DQN [1])

● Even without error, this might not be convergent (multiple fixed points)
● Regularizing the evaluation step is important!
● The mellowmax policy [2] is indeed a complicated way to do so [3]

[1] Z. Song et al. Revisiting the softmax bellman operator: New benefits and new perspective. ICML 2019.
[2] K. Asadi et al. An alternative softmax operator for reinforcement learning. ICML 2017.
[3] M. Geist et al. A theory of regularized MDPs. ICML 2019.



Entropy, type 1
● DP scheme

● SAC [1] and soft Q-learning [2,3] can be derived from this DP scheme

[1] T. Haarnoja et al. Soft actor-critic: Off-policy maximum entropy deep reinforcement learning with a stochastic actor. ICML 2018.
[2] T. Haarnoja et al. Reinforcement learning with deep energy-based policies. ICML 2017.
[3] R. Fox et al. Taming the noise in reinforcement learning via soft updates. UAI 2016.
[4] M. Geist et al. A theory of regularized MDPs. ICML 2019.



Entropy, type 1
● DP scheme

● SAC [1] and soft Q-learning [2,3] can be derived from this DP scheme
● Analysis [4] (VI vs reg. entropy, type 1)

[1] T. Haarnoja et al. Soft actor-critic: Off-policy maximum entropy deep reinforcement learning with a stochastic actor. ICML 2018.
[2] T. Haarnoja et al. Reinforcement learning with deep energy-based policies. ICML 2017.
[3] R. Fox et al. Taming the noise in reinforcement learning via soft updates. UAI 2016.
[4] M. Geist et al. A theory of regularized MDPs. ICML 2019.



KL, type 1
● DP scheme

● DPP [1] can be derived from this DP scheme

[1] M. Azar et al. Dynamic Policy Programming. JMLR 2012.
[2] M. Azar et al. Speedy Q-learning. NeurIPS 2011.
[3] N. Vieillard et al. Leverage the average: an analysis of KL regularization in RL. NeurIPS 2020.



KL, type 1
● DP scheme

● DPP [1] can be derived from this DP scheme
● It is a generalization of Speedy Q-learning [2] (+link to reg. with q-values)

[1] M. Azar et al. Dynamic Policy Programming. JMLR 2012.
[2] M. Azar et al. Speedy Q-learning. NeurIPS 2011.
[3] N. Vieillard et al. Leverage the average: an analysis of KL regularization in RL. NeurIPS 2020.



KL, type 1
● DP scheme

● DPP [1] can be derived from this DP scheme
● It is a generalization of Speedy Q-learning [2] (+link to reg. with q-values)
● Analysis [3] (VI vs MD-VI with KL, type 1)

[1] M. Azar et al. Dynamic Policy Programming. JMLR 2012.
[2] M. Azar et al. Speedy Q-learning. NeurIPS 2011.
[3] N. Vieillard et al. Leverage the average: an analysis of KL regularization in RL. NeurIPS 2020.



KL, type 2
● DP scheme

● TRPO [1] and even more MPO [2] are close to this scheme

[1] J. Schulman et al. Trust region policy optimization. ICML 2015.
[2] A. Abdolmaleki et al. Maximum a posteriori policy optimisation. ICLR 2018.
[3] N. Vieillard et al. Momentum in reinforcement learning. AISTATS 2020.
[4] Y. Abbasi-Yadkori et al. Politex: Regret bounds for policy iteration using expert prediction. ICML 2019.
[5] N. Vieillard et al. Leverage the average: an analysis of regularization in RL. arXiv 2020.



KL, type 2
● DP scheme

● TRPO [1] and even more MPO [2] are close to this scheme
● Generalizes Momentum-VI [3], VI-based variation of Politex [4]

[1] J. Schulman et al. Trust region policy optimization. ICML 2015.
[2] A. Abdolmaleki et al. Maximum a posteriori policy optimisation. ICLR 2018.
[3] N. Vieillard et al. Momentum in reinforcement learning. AISTATS 2020.
[4] Y. Abbasi-Yadkori et al. Politex: Regret bounds for policy iteration using expert prediction. ICML 2019.
[5] N. Vieillard et al. Leverage the average: an analysis of regularization in RL. arXiv 2020.



KL, type 2
● DP scheme

● TRPO [1] and even more MPO [2] are close to this scheme
● Generalizes Momentum-VI [3], VI-based variation of Politex [4]
● Analysis [5] (VI vs MD-VI with KL, type 2)

[1] J. Schulman et al. Trust region policy optimization. ICML 2015.
[2] A. Abdolmaleki et al. Maximum a posteriori policy optimisation. ICLR 2018.
[3] N. Vieillard et al. Momentum in reinforcement learning. AISTATS 2020.
[4] Y. Abbasi-Yadkori et al. Politex: Regret bounds for policy iteration using expert prediction. ICML 2019.
[5] N. Vieillard et al. Leverage the average: an analysis of regularization in RL. arXiv 2020.



Mixed entropy and KL, type 1
● DP scheme

● CVI [1] can be derived from this scheme (thus, advantage learning [2] too)

[1] T. Kozuno et al. Theoretical analysis of efficiency and robustness of softmax and gap-increasing operators in reinforcement learning. AISTATS 2019
[2] M. Bellemare at al. Increasing the action gap: New operators for reinforcement learning. AAAI 2019.
[3] N. Vieillard, B. Scherrer, O. Pietquin and M. Geist. Momentum in reinforcement learning. AISTATS 2020.
[4] N. Vieillard et al. Leverage the average: an analysis of KL regularization in RL. NeurIPS 2020.



Mixed entropy and KL, type 1
● DP scheme

● CVI [1] can be derived from this scheme (thus, advantage learning [2] too)
● Generalizes Momentum-DQN [3]

[1] T. Kozuno et al. Theoretical analysis of efficiency and robustness of softmax and gap-increasing operators in reinforcement learning. AISTATS 2019
[2] M. Bellemare at al. Increasing the action gap: New operators for reinforcement learning. AAAI 2019.
[3] N. Vieillard, B. Scherrer, O. Pietquin and M. Geist. Momentum in reinforcement learning. AISTATS 2020.
[4] N. Vieillard et al. Leverage the average: an analysis of KL regularization in RL. NeurIPS 2020.



Mixed entropy and KL, type 1
● DP scheme

● CVI [1] can be derived from this scheme (thus, advantage learning [2] too)
● Generalizes Momentum-DQN [3]
● Analysis [4] (VI vs MD-VI with KL+entropy, type 1)

[1] T. Kozuno et al. Theoretical analysis of efficiency and robustness of softmax and gap-increasing operators in reinforcement learning. AISTATS 2019
[2] M. Bellemare at al. Increasing the action gap: New operators for reinforcement learning. AAAI 2019.
[3] N. Vieillard, B. Scherrer, O. Pietquin and M. Geist. Momentum in reinforcement learning. AISTATS 2020.
[4] N. Vieillard et al. Leverage the average: an analysis of KL regularization in RL. NeurIPS 2020.



Mixed entropy and KL, type 2
● DP scheme

● Existing algorithm doing this?



Mixed entropy and KL, type 2
● DP scheme

● Existing algorithm doing this?
● Analysis: same issue as entropy/type 2
● Solution (for the analysis): introduce a type 3 [1]

● Mixes moving average of the errors with bounding of the biased 
quantity and kernel preconditioning… but not that interesting

[1] N. Vieillard et al. Leverage the average: an analysis of regularization in RL. arXiv 2020.
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Hint: it’s in the greedy step

The issue with (KL) regularization



OK for linear param., but...
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OK for linear param., but...
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We do errors here (with deep nets)



OK for linear param., but...

We do errors here (with deep nets)

We do errors here (with deep nets)
Not really compatible with stochastic 
approx. (but ok if moving average)
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Munchausen Reinforcement Learning

A remedy



A reparameterization trick



A reparameterization trick



A reparameterization trick

Munchausen term [1]

[1] N. Vieillard et al. Munchausen Reinforcement Learning. NeurIPS 2020



A reparameterization trick

Bonus: it also increases the action-gap,

Munchausen term [1]

[1] N. Vieillard et al. Munchausen Reinforcement Learning. NeurIPS 2020



Case study: DQN

● Let’s modify DQN with the Munchausen term to get Munchausen-DQN
● We’ll only modify the regression target of DQN:

● We need a stochastic policy, so just add some entropy regularization:

● Then, we just have to add the Munchausen term (       as above):

● (notice that the log-policy terms have different signs)
● That’s it!

P 78



Case study: DQN

● How good is Munchausen-DQN compared to DQN?
○ Aggregated results on the 60 Atari games of ALE, with also C51

P 79



Case study: DQN

● How good is Munchausen-DQN compared to DQN?
○ Per game improvement

P 80



Case study: IQN

● This is a general approach. As an example, we apply it to IQN [1]
● Munchausen-IQN vs IQN, aggregated results over 60 games

P 81
[1] W. Dabney et al. Implicit Quantile Networks for Distributional Reinforcement Learning, ICML 2018.
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Conclusion



This talk

● Overview of regularized approximate dynamic programming
○ Connections to convex optimization/online learning
○ Allows recovering (variations of) (many) regularized RL agents
○ Allows for a theoretical analysis
○ Bring new agents, simple, theoretically grounded and very efficient 

(Munchausen RL)
● Many other possible outcomes

○ Imitation learning
○ Inverse RL
○ Offline RL
○ Multi-agent RL and game theory
○ ...



Thanks!


